scholarly journals SAINS DATA, BIG DATA, DAN ANALISIS PREDIKTIF: SEBUAH LANDASAN UNTUK KECERDASAN KEAMANAN SIBER

2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Dicky R. M. Nainggolan

<p><strong>Abstrak</strong> – Data merupakan unsur terpenting dalam setiap penelitian dan pendekatan ilmiah. Metodologi sains data digunakan untuk memilah, memilih dan mempersiapkan sejumlah data untuk diproses dan dianalisis. Teknologi big data mampu mengumpulkan data dengan sangat banyak dari berbagai sumber dengan tujuan untuk mendapatkan informasi dengan visualisasi tren atau menyingkapkan pengetahuan dari suatu peristiwa yang terjadi baik dimasa lalu, sekarang, maupun akan datang dengan kecepatan pemrosesan data sangat tinggi. Analisis prediktif memberikan wawasan analisis lebih dalam dan kemunculan machine learning membawa analisis data ke tingkat yang lebih tinggi dengan bantuan teknologi kecerdasan buatan dalam tahap pemrosesan data mentah. Analisis prediktif dan machine learning menghasilkan laporan berbentuk visual untuk pengambil keputusan dan pemangku kepentingan. Berkenaan dengan keamanan siber, big data menjanjikan kesempatan dalam rangka untuk mencegah dan mendeteksi setiap serangan canggih siber dengan memanfaatkan data keamanan internal dan eksternal.</p><p><br /><strong>Kata Kunci</strong>: analisis prediktif, big data, intelijen, keamanan siber, sains data</p><p><strong><em>Abstract</em> </strong>– Data are the prominent elements in scientific researches and approaches. Data Science methodology is used to select and to prepare enormous numbers of data for further processing and analysing. Big Data technology collects vast amount of data from many sources in order to exploit the information and to visualise trend or to discover a certain phenomenon in the past, present, or in the future at high speed processing capability. Predictive analytics provides in-depth analytical insights and the emerging of machine learning brings the data analytics to a higher level by processing raw data with artificial intelligence technology. Predictive analytics and machine learning produce visual reports for decision makers and stake-holders. Regarding cyberspace security, big data promises the opportunities in order to prevent and to detect any advanced cyber-attacks by using internal and external security data.</p><p><br /><strong><em>Keywords</em></strong>: big data, cyber security, data science, intelligence, predictive analytics</p>

2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Dicky R. M. Nainggolan

<p><em><strong>Abstract</strong> – Data are the prominent elements in scientific researches and approaches. Data Science methodology is used to select and to prepare enormous numbers of data for further processing and analysing. Big Data technology collects vast amount of data from many sources in order to exploit the information and to visualise trend or to discover a certain phenomenon in the past, present, or in the future at high speed processing capability. Predictive analytics provides in-depth analytical insights and the emerging of machine learning brings the data analytics to a higher level by processing raw data with artificial intelligence technology. Predictive analytics and machine learning produce visual reports for decision makers and stake-holders. Regarding cyberspace security, big data promises the opportunities in order to prevent and to detect any advanced cyber-attacks by using internal and external security data.</em></p><p><br /><em><strong>Keywords</strong>: Big Data, Cyber Security, Data Science, Intelligence, Predictive Analytics</em></p><p><br /><em><strong>Abstrak</strong> – Data merupakan unsur terpenting dalam setiap penelitian dan pendekatan ilmiah. Metodologi sains data digunakan untuk memilah, memilih dan mempersiapkan sejumlah data untuk diproses dan dianalisis. Teknologi big data mampu mengumpulkan data dengan sangat banyak dari berbagai sumber dengan tujuan untuk mendapatkan informasi dengan visualisasi tren atau menyingkapkan pengetahuan dari suatu peristiwa yang terjadi baik dimasa lalu, sekarang, maupun akan datang dengan kecepatan pemrosesan data sangat tinggi. Analisis prediktif memberikan wawasan analisis lebih dalam dan kemunculan machine learning membawa analisis data ke tingkat yang lebih tinggi dengan bantuan teknologi kecerdasan buatan dalam tahap pemrosesan data mentah. Analisis prediktif dan machine learning menghasilkan laporan berbentuk visual untuk pengambil keputusan dan pemangku kepentingan. Berkenaan dengan keamanan siber, big data menjanjikan kesempatan dalam rangka untuk mencegah dan mendeteksi setiap serangan canggih siber dengan memanfaatkan data keamanan internal dan eksternal.</em></p><p><br /><strong>Kata Kunci</strong>: Analisis Prediktif, Big Data, Intelijen, Keamanan Siber, Sains Data</p>


Author(s):  
Shaveta Bhatia

 The epoch of the big data presents many opportunities for the development in the range of data science, biomedical research cyber security, and cloud computing. Nowadays the big data gained popularity.  It also invites many provocations and upshot in the security and privacy of the big data. There are various type of threats, attacks such as leakage of data, the third party tries to access, viruses and vulnerability that stand against the security of the big data. This paper will discuss about the security threats and their approximate method in the field of biomedical research, cyber security and cloud computing.


Author(s):  
Muhammad Junaid ◽  
Shiraz Ali Wagan ◽  
Nawab Muhammad Faseeh Qureshi ◽  
Choon Sung Nam ◽  
Dong Ryeol Shin

Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


2018 ◽  
Vol 15 (3) ◽  
pp. 497-498 ◽  
Author(s):  
Ruth C. Carlos ◽  
Charles E. Kahn ◽  
Safwan Halabi

Web Services ◽  
2019 ◽  
pp. 105-126
Author(s):  
N. Nawin Sona

This chapter aims to give an overview of the wide range of Big Data approaches and technologies today. The data features of Volume, Velocity, and Variety are examined against new database technologies. It explores the complexity of data types, methodologies of storage, access and computation, current and emerging trends of data analysis, and methods of extracting value from data. It aims to address the need for clarity regarding the future of RDBMS and the newer systems. And it highlights the methods in which Actionable Insights can be built into public sector domains, such as Machine Learning, Data Mining, Predictive Analytics and others.


Author(s):  
Armando Fandango ◽  
William Rivera

Scientific Big Data being gathered at exascale needs to be stored, retrieved and manipulated. The storage stack for scientific Big Data includes a file system at the system level for physical organization of the data, and a file format and input/output (I/O) system at the application level for logical organization of the data; both of them of high-performance variety for exascale. The high-performance file system is designed with concurrent access, high-speed transmission and fault tolerance characteristics. High-performance file formats and I/O are designed to allow parallel and distributed applications with easy and fast access to Big Data. These specialized file formats make it easier to store and access Big Data for scientific visualization and predictive analytics. This chapter provides a brief review of the characteristics of high-performance file systems such as Lustre and GPFS, and high-performance file formats such as HDF5, NetCDF, MPI-IO, and HDFS.


Author(s):  
Angad Gupta ◽  
Ruchika Gupta ◽  
A. Sankaran

Machine learning (without human interference) can collect, analyze, and process data. In the case of cyber security, this technology helps to better analyze previous cyber-attacks and develop respective defense responses. This approach enables an automated cyber defense system with a minimum-skilled cyber security force. There are high expectations for machine learning (ML) in cyber security, and for good reasons. With the help of ML algorithms, we can sift through massive amounts of security events looking for anomalies, deviations from normal behavior that are often indicative of malicious activity. These findings are then presented to the analyst for review and vetting, and the results of his determination fed back into the system for training. As we process more and more data through the system, it evolves: it learns to recognize similar events and, eventually, the underlying traits of malicious behavior that we're trying to detect. This chapter explores machine learning forensics.


Sign in / Sign up

Export Citation Format

Share Document