scholarly journals Modeling of Power Module for 48 V High Power Inverter

Keyword(s):  
2021 ◽  
Vol 11 (9) ◽  
pp. 4170
Author(s):  
Jeong Eun Park ◽  
Won Seok Choi ◽  
Donggun Lim

Silicon wafers are crucial for determining the price of solar cell modules. To reduce the manufacturing cost of photovoltaic devices, the thicknesses of wafers are reduced. However, the conventional module manufacturing method using the tabbing process has a disadvantage in that the cell is damaged because of the high temperature and pressure of the soldering process, which is complicated, thus increasing the process cost. Consequently, when the wafer is thinned, the breakage rate increases during the module process, resulting in a lower yield; further, the module performance decreases owing to cracks and thermal stress. To solve this problem, a module manufacturing method is proposed in which cells and wires are bonded through the lamination process. This method minimizes the thermal damage and mechanical stress applied to solar cells during the tabbing process, thereby manufacturing high-power modules. When adopting this method, the front electrode should be customized because it requires busbarless solar cells different from the existing busbar solar cells. Accordingly, the front electrode was designed using various simulation programs such as Griddler 2.5 and MathCAD, and the effect of the diameter and number of wires in contact with the front finger line of the solar cell on the module characteristics was analyzed. Consequently, the efficiency of the module manufactured with 12 wires and a wire diameter of 0.36 mm exhibited the highest efficiency at 20.28%. This is because even if the optical loss increases with the diameter of the wire, the series resistance considerably decreases rather than the loss of the short-circuit current, thereby improving the fill factor. The characteristics of the wire-embedded ethylene vinyl acetate (EVA) sheet module were confirmed to be better than those of the five busbar tabbing modules manufactured by the tabbing process; further, a high-power module that sufficiently compensated for the disadvantages of the tabbing module was manufactured.


2014 ◽  
Vol 599-601 ◽  
pp. 1657-1660
Author(s):  
Shu Zhen Liu

Switch power module parallel operation system is one of the technological developing directions of power with high-power output and uninterruptible supply. The paper puts forward a concept to design switch power module parallel operation system, which adopts two TPS5430 chips to compose DC-DC cell parallel and through their load sharing to control chip UCC39002 to implement DC-DC unit outputting equalized current. It succeeds in building experimental prototype.


2013 ◽  
Vol 303-306 ◽  
pp. 1902-1907 ◽  
Author(s):  
Yi Bo Wu ◽  
Guo You Liu ◽  
Ning Hua Xu ◽  
Ze Chun Dou

As the IGBT power modules have promising potentials in the application of the field of traction or new energy, the higher power density and higher current rating of the IGBT module become more and more attractive. Thermal resistance is one of the most important characteristics in the application of power semiconductor module. A new 1500A/3300V IGBT module in traction application is developed successfully by Zhuzhou CSR Times Electric Co., Ltd (Lincoln). Thermal resistance management of this IGBT module with high power density is performed in this paper. Based on thermal nodes network, an equivalent circuit model for thermal resistance of power module is highlighted from which the steady state thermal resistance can be optimized by theoretical analysis. Furthermore, thermal numerical simulation of 1500A/3300V IGBT module is accomplished by means of finite element model (FEM). Finally, the thermal equivalent model of the IGBT module is verified by simulation results.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 829
Author(s):  
Fabio Paolo Lo Gerfo ◽  
Patrizia Livreri

A microwave power module (MPM), which is a hybrid combination of a solid-state power amplifier (SSPA) as a driver and a traveling-wave tube amplifier (TWT) as the final high power stage, is a high-power device largely used for radar applications. A gain equalizer is often required to flatten the TWT output power gain owing to its big gain fluctuations over the operating frequency range. In this paper, the design of an X-band, fully-coaxial, easily-tunable broadband power equalizer for an MPM is presented. The structure is composed of a coaxial waveguide as the main transmission line and a coaxial cavity loaded with absorbing material as a resonant unit. Sensitivity analyses of the attenuation amplitude and resonant frequency of the equalizer in terms of coaxial cavity length, thickness of the absorbing disc, and insertion depth of the probe were carried out. The measured results were in good agreement with the simulated ones, showing that the equalization curve met the requirements well and proved that this optimal structure has the advantages of a large power capacity, a wide operating frequency band, is easily tunable, and good transmission performance.


2018 ◽  
Vol 51 (31) ◽  
pp. 690-693
Author(s):  
Liangtao Zhu ◽  
Tao Wang ◽  
Jinqiu Song ◽  
Bin Li ◽  
Jianguo Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document