182. A Comparison of X-Ray Fluorescence and Wet Chemical Analysis of Air Filter Samples from a Lead/Zinc/Silver Ore Concentrator Mill

2006 ◽  
Author(s):  
B. Pacolay
2004 ◽  
Vol 6 (10) ◽  
pp. 819 ◽  
Author(s):  
Martin Harper ◽  
Timothy S. Hallmark ◽  
Michael E. Andrew ◽  
Aaron J. Bird

1994 ◽  
Vol 58 (391) ◽  
pp. 307-314 ◽  
Author(s):  
Mizuhiko Akizuki ◽  
Hirotugu Nisidoh ◽  
Yasuhiro Kudoh ◽  
Tomohiro Watanabe ◽  
Kazuo Kurata

AbstractA study of apatite crystals from the Asio mine, Japan, showed sectoral texture related to the growth of the crystal, and with optically biaxial properties within the sectors. Wet chemical analysis gave a composition Ca5(PO4)3(F0.64,OH0.38,Cl0.01)1.03 for the specimen.Additional diffraction spots were not observed in precession and oscillation X-ray photographs and electron diffraction photographs. Since the internal textures correlate with the surface growth features, it is suggested that the internal textures and the unusual optical properties were produced during nonequilibrium crystal growth. The fluorine/hydroxyl sites in hexagonal apatite are symmetrically equivalent in the solid crystal but, at a growth surface, this equivalence may be lost, resulting in a reduction of crystal symmetry. Heating of the apatite to about 850°C results in the almost complete disappearance of the optical anomalies due to disordering, which may be related to the loss of hydroxyl from the crystal.


1985 ◽  
Vol 49 (350) ◽  
pp. 103-105 ◽  
Author(s):  
Rab Nawaz ◽  
John F. Malone ◽  
Victor K. Din

AbstractPseudomesolite from Carlton Peak, described by Winchell (1900), is shown to be mesolite by means of chemical and X-ray data. A proposal to this effect has been accepted by the International Mineralogical Association's Commission on New Minerals and Mineral Names. Electron microprobe analysis revealed variations in the composition of pseudomesolite and showed the presence of faroelite. The X-ray powder diffraction pattern is similar to that of mesolite. Single-crystal Weissenberg photographs showed a twinning intergrowth which is explained by a 90° rotation of 50% of the unit cells about the c-axis, so that the a- and b-axes of rotated cells coincide with the b- and a-axes respectively of the unrotated cells. This twinning can not be detected optically. Mesolite has recently been proved to be orthorhombic, contrary to the long-held view that it is monoclinic.Pseudomesolite from Oregon is also shown to be mesolite by single crystal Weissenberg photographs. A wet chemical analysis shows this material to be extremely silica-rich.


2002 ◽  
Vol 55 (4) ◽  
pp. 263-266 ◽  
Author(s):  
Geraldo Magela da Costa ◽  
Valdirene Gonzaga de Resende ◽  
Norberto Magno Toríbio

The quantification of goethite, magnetite, martite and specularite in iron ores was successfully achieved by a combination of wet chemical analysis and x-ray diffraction. It was found that the intensity of the goethite (111) peak is constant for a certain sample provided that the same sample holder is used. Calibration curves with a linear behavior have been derived using the areas of the above mentioned peak and the amounts of goethite obtained by Mössbauer spectroscopy and optical microscopy. In addition, the integral width of the hematite (012) line broadens linearly as the amount of martite increases, thus allowing an estimation of the amounts of martite and specularite.


1981 ◽  
Vol 25 ◽  
pp. 163-168
Author(s):  
H. L. Bramlet ◽  
J. H. Doyle

AbstractAn x-ray secondary target method for routine determination of gallium, iron, and nickel in plutonium metal is described that has significant advantages over wet chemical analysis. Coupons requiring minimal preparation for analysis are produced as a breakaway tab on the plutonium ingot. All three elements are determined on the same coupon. Gallium is determined using an arsenic secondary target followed by iron and nickel using a zinc target. The analysis times are 5 minutes for gallium and 15 minutes for the combined iron and nickel. The method of analysis was evaluated in the range of from 0.5 to 1.5% gallium. Iron was investigated over the range of 67 to 3000 ppm and nickel from 64 to 110 ppm.


Clay Minerals ◽  
1983 ◽  
Vol 18 (1) ◽  
pp. 77-88 ◽  
Author(s):  
A. Fontanaud ◽  
A. Meunier

AbstractWeathering products of a serpentinized Iherzolite were investigated using optical microscopy, X-ray diffraction, infrared spectroscopy, and electron microprobe and wet-chemical analysis methods. The original mineral assemblage of the rock was chrysotile-enstatite-diopside-picotite-magnetite-calcite. Rock porosity governed the types of chemical microsystems from which the clay minerals were derived. These microsystems were grouped into three types. (1) Grain microcracks and grain boundaries. These were the earliest manifestations of weathering. Only pyroxenes were affected and transformed into talc + iron oxides. (2) Plasma zones in which the rock structure was preserved. The talc + oxide and chrysotile were both altered into a saponitic mineral. Picotite was oxidized to oxipicotite. (3) Fissure zones. In the argillized zones the rock was restructured. Saponite was altered to nontronite + magnesium silicate gel. Talc was also transformed to the same gel. Fissures were often filled with clay cutans and some were edged with iron oxides. Mineral facies in the different zones have been plotted in Si-R2-R3 coordinates.


Fuel ◽  
2016 ◽  
Vol 182 ◽  
pp. 161-165 ◽  
Author(s):  
P. Xing ◽  
P.E. Mason ◽  
S. Chilton ◽  
S. Lloyd ◽  
J.M. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document