Relationship between Metal Can Pack Test and Electrochemical Corrosion Test from the View Point of Polarization Resistance

2019 ◽  
Vol 68 (9) ◽  
pp. 248-254
Author(s):  
Osami Seri ◽  
Mitsunori Imaizumi
2008 ◽  
Vol 1107 ◽  
Author(s):  
Gloria Kwong ◽  
Anatolie Carcea ◽  
Roger C. Newman

AbstractAn aging assessment of the OPG waste resin storage system predicted the potential for premature failure of the carbon steel resin liners. Consequently, resin liners made of 316L stainless steel with a minimum content of 2.5% molybdenum were selected to replace the carbon steel liners. The 2.5% Mo 316L stainless steel was specified to enhance pitting resistance in the spent resin environment. With the additional Mo, one would expect that a brief electrochemical corrosion test will reveal the superiority of such alloy over conventional 316L steel. This study reports a contrary experience


2021 ◽  
Vol 2070 (1) ◽  
pp. 012205
Author(s):  
Y Reddy Pratapa ◽  
K L Narayana ◽  
M Kedar Mallik

Abstract Aluminium sample coupon is evaluated for electro-chemical, tribological and microstructural study under selected test conditions. Aluminium is a light-weight material chiefly preferred in fields like automobile, aerospace, marine and satellite domestic appliances etc. Moreover, due to its specific characteristics, it plays a crucial role in industries and research fields. In the present work, the ex situ tribological (wear test), electrochemical (corrosion test), mechanical (microhardness test) and microstructural (nodularity percentage) behaviours of Aluminum sample is presaged. The test results reveal that, when experiment advance, with respect to time the wear rate increases, frictional force is decreased and pin temperature increased. The corrosion test is held on specimen coupon in two modes, before and after wear test, and observed that the corrosion rate gets improved on specimen after wear test. Nodularity analysis also express that the nodularity percentage is increased by 5%. Before wear test, the percentage of accepted count to total count of nodules on texture is 65.18%, while the percentage after wear test is found to be 70.29%. The Vickers Microhardness analysis exhibits the hardness value as 160 HV on Vickers Hardness Scale.


2014 ◽  
Vol 789 ◽  
pp. 622-626
Author(s):  
Peng Chao Zhang ◽  
Jian Zhang ◽  
Jin Chuan Jie ◽  
Yuan Gao ◽  
Yong Dong ◽  
...  

The effect of different alloying elements on corrosion behavior of copper alloys was investigated using electrochemical corrosion and salt spray corrosion test in NaCl solution. Cu-Ag has the most stable corrosion current in the potentiostatic scanning test, exhibiting a better corrosion resistant performance. It can be analyzed from corrosion surface morphologies that Cu-Ag presents exfoliation corrosion mechanism while Cu-Sn shows crevice corrosion mechanism. Cu-Mg has a complex corrosion process caused by multiple corrosion mechanism. In the salt spray corrosion test, the corrosion degree of Cu-Ag is lighter than those of Cu-Sn and Cu-Mg after 24h test. Therefore, the Cu-Ag alloy exhibits the best corrosion resistance in chloride solution.


2019 ◽  
Vol 27 (08) ◽  
pp. 1950188
Author(s):  
A. ALKHAWWAM ◽  
B. ABDALLAH ◽  
A. K. JAZMATI ◽  
M. TOOTANJI ◽  
F. LAHLAH

In this work, TiAlV thin films have been prepared on two different types of substrates: silicon and stainless steel (SS304) by two deposition methods: Pulsed Laser Deposition (PLD) and DC magnetron sputtering. Different techniques have been employed in order to characterize film properties such as: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), X-ray diffraction (XRD), microhardness and corrosion test. EDX analysis showed that the deposited films are slightly different from that of the target material Ti6Al4V alloy. The measured microhardness values are about 11.7[Formula: see text]GPa and 4.7[Formula: see text]GPa for films prepared by PLD and DC magnetron sputtering, respectively. Corrosion test indicated that the corrosion resistance of the two TiAlV films deposited on SS304 substrates in (0.9% NaCl) physiological normal saline medium was significantly improved compared with the SS304 substrates. These attractive results could permit applications of our films in the medical implants fabrication.


2011 ◽  
Vol 311-313 ◽  
pp. 996-1000 ◽  
Author(s):  
Jing Xu ◽  
Jian Wei Yang ◽  
Jian Ping Cao ◽  
Chen Chen

The corrosion behavior of X70 pipeline steel in 0.5% NaC1 solution in different temperature of 25°C、35°C and 55°C was studied by dynamic potential polarization curve and electrochemical impedance spectroscopy(EIS)method. The corrosion topography of X70 pipeline steel in normal temperature and 30°C was also compared in immersion corrosion test after 25 days. The results show that when the temperature rises, the corrosion current density Icorr increases, the linear polarization resistance reduces, cathode polarization curve right shift, caused corrosion rate increases which primarily by the increasing the transmission of reactant in the cathode reaction. Pitting corrosion developed after 25 days immersion corrosion in 30°C solution which proved the promoter action of temperature to pit corrosion, and which is agreed with the electrochemical corrosion test results.


2010 ◽  
Vol 150-151 ◽  
pp. 1034-1038
Author(s):  
Shang Dong Chen ◽  
Ting Sun ◽  
Hong Nian

A new method for preparation of coatings with codeposition plating on the ordinary A3 steel and heat treatment later. Research the coatings on electrochemical corrosion behavior variation in Q-sun. Results show that corrosion potential shuffle, corrosion current density reduced nearly two number magnitudes value, polarization resistance increased, the cathode polarization effect enhanced obviously in polarization curves, and self-corrosion current reduced, impedance increased twenty times in alternating current impedance atlas than A3 steel substrate without coatings. It was indicated that the coating improve effectively the corrosion resistance of plain carbon steel.


Sign in / Sign up

Export Citation Format

Share Document