scholarly journals Colistin and Kanamycin Together in Association with Coridothymus capitatus to Enhance their Antimicrobial Activity and Fight Multidrug-Resistance Pathogens

2020 ◽  
Vol 11 (2) ◽  
pp. 8608-8625

It should be remembered that bacteria continue to spread and develop new types of resistance, so further actions are needed to deal with antibiotic resistance. As a result, antibacterial drugs have become less effective, resulting in the accelerated discovery of available alternative treatments, including essential oils. The aim of this work was to intensify and promote the action of two antibiotics, kanamycin, and colistin, to fight antibiotic resistance thanks to the action of essential oil obtained from the flowers of Coridothymus capitatus grown on the Iblei mountains. To this end, a comparison of biological and chemical assays was carried out. The results showed a broad antimicrobial power of the essential oil itself and a great synergistic activity in combination with Kanamycin and Colistin against multidrug-resistant bacteria. These combinations increased the range of antibiotics, leading us to speculate that it could be incorporated into new pharmaceutical formulations for therapies of infections caused by increasingly dangerous bacteria. Antibiotic resistance represents an ever-greater danger to human health. This work re-evaluates the use of colistin and kanamycin thanks to the synergistic action found with the addition of a natural substance to pave the way for new therapeutic strategies.

2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Mohammad Aminul Islam ◽  
Moydul Islam ◽  
Rashedul Hasan ◽  
M. Iqbal Hossain ◽  
Ashikun Nabi ◽  
...  

ABSTRACT Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla NDM-1 gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla NDM-1-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla CTX-M-1 (80%), bla CTX-M-15 (63%), bla TEM (76%), bla SHV (33%), bla CMY-2 (16%), bla OXA-48-like (2%), bla OXA-1 (53%), and bla OXA-47-like (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla NDM-1 were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community. IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla NDM-1 gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.


2015 ◽  
Vol 9 (26) ◽  
pp. 741-748 ◽  
Author(s):  
Neves Camargos Vidyleison ◽  
Marjorie Silva Herrera Karina ◽  
dos Santos Michelli ◽  
Souza Carvalho Rafaella ◽  
Alves Rodrigues dos Santos Lima Luciana ◽  
...  

2020 ◽  
Vol 149 ◽  
pp. 104529
Author(s):  
Jorge Belém Oliveira-Júnior ◽  
Everton Morais da Silva ◽  
Dyana Leal Veras ◽  
Karla Raíza Cardoso Ribeiro ◽  
Catarina Fernandes de Freitas ◽  
...  

2007 ◽  
Vol 38 (4) ◽  
pp. 704-709 ◽  
Author(s):  
Paulo André Vicente Fernandes ◽  
Isabel Renata de Arruda ◽  
Antônio Fernando Amatto Botelho dos Santos ◽  
Ana Albertina de Araújo ◽  
Ana Maria Souto Maior ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
M. F. Elkady ◽  
H. Shokry Hassan ◽  
Elsayed E. Hafez ◽  
Ahmed Fouad

Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureusandBacillus subtilis) and Gram-negative (Escherichia coliandPseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity.


Sign in / Sign up

Export Citation Format

Share Document