scholarly journals Synthetic Approaches and Biological Significance of Oxazolone Moieties: A Review

2021 ◽  
Vol 12 (5) ◽  
pp. 6460-6486

Oxazolone is a five-membered heterocyclic compound which is also known as azlactone. It contains one oxygen and one nitrogen as heteroatoms, which exist in five isomeric forms, according to the carbonyl group's location and the double bonds such as: 5 (4)-oxazolones, 5 (2) – oxazolones, 2 (3)-oxazolones, 4 (5)-oxazolones, and 2 (5)-oxazolones. 5 (4)-oxazolones is the most important heterocyclic moiety among all isomeric form of oxazolones. It is classified into two classes: saturated and unsaturated oxazolones. It is synthesized by various synthetic routes. Oxazolones are reported to exhibit various pharmacological activities such as antimicrobial, anti-inflammatory, anticancer, anti-HIV, antiangiogenic, anticonvulsant, sedative, cardiotonic, antidiabetic activity, etc.

2020 ◽  
Vol 17 ◽  
Author(s):  
Rukhsana Tabassum ◽  
Muhammad Ashfaq ◽  
Hiroyuki Oku

Abstract:: Synthesis of heterocyclic compounds containing quinoline scaffold attracted a significant attention of organic chemists due to their importance as therapeutic agent in pharmaceutical industry. Quinolone molecule exhibit extensive biological activities a few of which are antiviral, anti-inflammatory antibacterial, antifungal, antiproliferative, anthelmintic and anticonvulsant. A variety of synthetic routes has been developed for construction compounds bearing quinoline nucleus due to its broad spectrum of pharmacological activities. This review describes recent development in transition metal mediated synthetic protocols of these important heterocycles by formation of quinoline ring or by substitution of quinoline rings including both modified conventional name reactions and novel routes with highly functionalized quinoline products.


Author(s):  
Amala Babu ◽  
Sneha Antony ◽  
Femy Maria KM ◽  
Dr.Vinod B

Pyrazole represents a versatile class among heterocyclic compounds due to its impact in biological and pharmacological field irrespective of its scarcity in nature. From the structural point of view, pyrazoles are rather interesting and chemically it is known as 1,2-Diazoles.Also, it is a five membered heterocyclic compound containing 2 Nitrogen atoms. As per different studies, Pyrazoles and its derivatives own a wide range of biological activities like Antibacterial, Analgesic, Antioxidant etc. The main intention of this review is to run an overview of diverse pharmacological activities of pyrazole moiety especially antimicrobial, anti-inflammatory, antioxidant, analgesic, Hypoglycemic, anticancer and enzyme inhibitory effects.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2020 ◽  
Vol 24 (24) ◽  
pp. 2823-2844
Author(s):  
Aditya Bhattacharyya

: Multiheteroatom-containing small-sized cyclic molecules such as 2- iminothiazolidines are often found to possess beneficial pharmacological properties. In this review article, the biological significance of 2-iminothiazolidines is discussed and the literature reports published in the last 15 years spanning from 2006 to 2020 describing various preparative routes to access 2-iminothiazolidine derivatives have been categorically and chronologically described. The notable synthetic methods discussed here involve ringexpansion transformations of nonactivated and activated aziridines, thiiranes, epoxides, and other miscellaneous reactions.


Author(s):  
Jaya Dwivedi ◽  
Neetu Yaduvanshi ◽  
Shruti Shukla ◽  
Sonika Jain

: Since 1887, phenoxazine derivatives have attracted attention of chemist due to its versatile utility, industrially and pharmacologically. Literature is found abundant with various pharmacological activities of phenoxazine derivatives like antitumor, anticancer, antifungal, antibacterial, anti-inflammatory, anti-diabetic, anti-viral, anti-malarial, antidepressant, analgesic and many other drug resistance reversal activities. This review covers detailed over-view on pharmacological application of phenoxazine nucleus, its chemistry and reactivity and also illustrating the incorporation of different group at different positions enhancing its biological application, besides some synthetic procedures.


2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Author(s):  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  
...  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.


2019 ◽  
Vol 19 (7) ◽  
pp. 875-915 ◽  
Author(s):  
Amr M. Abdelmoniem ◽  
Magda F. Mohamed ◽  
Doaa M. Abdelmoniem ◽  
Said A.S. Ghozlan ◽  
Ismail A. Abdelhamid

In this review, the recent synthetic approaches of amino hexahydroquinolines and their spirocyclic structures were highlighted. The synthetic routes include, two-components, three-components or fourcomponents reactions. The two-component [3+3] atom combination reaction represents the simplest method. It involves Michael addition of the electron rich β-carbon of β-enaminones to the activated double bond of cinnamonitriles followed by cyclization to yield hexahydroquinoline compounds. The bioactivity profiles and SAR studies of these compounds were also reviewed with emphasis to the utility of these substances as antimicrobial, anticancer and antitubercular agents, as well as calcium channel modulators.


Author(s):  
Zahra Zakeri Khatir ◽  
Hamid Irannejad

: 1, 2, 4-Triazine derivatives have received much attention due to their multifunctional nature, especially in diverse pharmacological properties as well as a key fragment in many drug candidates. Introduction of a vicinal 5, 6-diaryl/heteroaryl moiety on the 1, 2, 4-triazine ring has attracted plentiful attention in the field of medicinal chemistry. 5, 6-Diaryl/heteroaryl-3-substituted-1, 2, 4-triazine is as a prominent scaffold in many drug candidates which has shown a wide range of pharmacological activities such as anti-diabetic, antifungal, anti-inflammatory, anticancer, anti-HIV, neuroprotective, anticonvulsant, anti- Alzheimer, anti-Parkinson and antioxidant. In this review, we have discussed synthesis, various pharmacological activities of 5, 6-diaryl/heteroaryl-3-substituted-1, 2, 4-triazines, their structure-activity relationship (SAR), pharmacophoric elements and their mechanism of action reported in the published articles during 2000-2019. Evaluation of compounds by PAINS filtering tool was accomplished and showed that this versatile structure could be considered as a privileged structure. Compilation of the biological data confirmed that the position 3 of the 1,2,4-triazine is a key location to determine the affinity and selectivity of the 5,6-diaryl/heteroaryl-3-substituted-1, 2, 4-triazines towards different biologic targets. Specific geometrical and thermodynamic characters of this motif have prompted it as a frequent hitter.


2021 ◽  
Vol 18 ◽  
Author(s):  
Meenu Devi ◽  
Shivangi Jaiswal ◽  
Sonika Jain ◽  
Navjeet Kaur ◽  
Jaya Dwivedi

: Nitrogen-containing heterocycles attract the attention of chemists due to their multifarious activities. Amongst all, pyrimidine plays a central role and exhibits a broad spectrum of biological activities. Literature is replete with the various aspects of synthetic development in pyrimidine chemistry for a wide array of applications. It aroused our interest to compile various novel and efficient synthetic approaches towards the synthesis of pyrimidine and its derivatives. Pyrimidine derivatives are broadly useful as therapeutic agents, owing to their high degree of structural diversity. They have been recorded to possess a diverse range of therapeutic activities, viz. anticancer, anti-inflammatory, anti-HIV etc.


ChemInform ◽  
2005 ◽  
Vol 36 (45) ◽  
Author(s):  
Alma Viso ◽  
Roberto Fernandez de la Pradilla ◽  
Ana Garcia ◽  
Aida Flores

Sign in / Sign up

Export Citation Format

Share Document