Synthetic Routes to 2-Iminothiazolidines: State-of-the-Art 2006-2020

2020 ◽  
Vol 24 (24) ◽  
pp. 2823-2844
Author(s):  
Aditya Bhattacharyya

: Multiheteroatom-containing small-sized cyclic molecules such as 2- iminothiazolidines are often found to possess beneficial pharmacological properties. In this review article, the biological significance of 2-iminothiazolidines is discussed and the literature reports published in the last 15 years spanning from 2006 to 2020 describing various preparative routes to access 2-iminothiazolidine derivatives have been categorically and chronologically described. The notable synthetic methods discussed here involve ringexpansion transformations of nonactivated and activated aziridines, thiiranes, epoxides, and other miscellaneous reactions.

2019 ◽  
Vol 23 (17) ◽  
pp. 1843-1856
Author(s):  
Aditya Bhattacharyya

Partially reduced heterocyclic compounds such as 1,4,5,6-tetrahydropyrimidines are often found to possess interesting pharmacological properties. Yet, the synthetic routes towards such systems are less developed than their fully aromatic counterparts. In this review article, the biological significance of 1,4,5,6-tetrahydropyrimidines is discussed and the existing literature reports describing various preparative routes to access 1,4,5,6-tetrahydropyrimidine derivatives have been categorically described. The focus has been expanded to present an overview of the chronological development of the traditional synthetic routes as well as the contemporary approaches to 1,4,5,6-tetrahydropyrimidines that generally include: (i) condensation reactions of diamines with various appropriate counterparts such as carbonyl compounds, imino ethers, amidines or nitriles, condensation of amidines with 1,3-dibromopropane and α,β-unstaurated carbonyl compounds, condensation of amino alcohols; (ii) selective reduction of pyrimidines; (iii) ring expansion chemistry of cyclopropanes, aziridines, and azetidines; and (iv) miscellaneous examples such as various multicomponent reactions.


2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Author(s):  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  
...  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1977
Author(s):  
Lorenzo Vallan ◽  
Emin Istif ◽  
I. Jénnifer Gómez ◽  
Nuria Alegret ◽  
Daniele Mantione

Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.


Author(s):  
Xabier Rodríguez-Martínez ◽  
Enrique Pascual-San-José ◽  
Mariano Campoy-Quiles

This review article presents the state-of-the-art in high-throughput computational and experimental screening routines with application in organic solar cells, including materials discovery, device optimization and machine-learning algorithms.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


2000 ◽  
Vol 53 (6) ◽  
pp. 147-174 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

A review of recent developments and state-of-the-art in research and understanding of damage and fatigue of ceramic matrix composites is presented. Both laminated as well as woven configurations are considered. The work on the effects of high temperature on fracture and fatigue of ceramic matrix composites is emphasized, because these materials are usually designed to operate in hostile environments. Based on a detailed discussion of the mechanisms of failure, the problems that have to be addressed for a successful implementation of ceramic matrix composites in design and practical operational structures are outlined. This review article includes 317 references.


2001 ◽  
Vol 54 (1) ◽  
pp. 69-92 ◽  
Author(s):  
Igor V. Andrianov ◽  
Jan Awrejcewicz

In this review article, we present in some detail new trends in application of asymptotic techniques to mechanical problems. First we consider the various methods which allows for the possibility of extending the perturbation series application space and hence omiting their local character. While applying the asymptotic methods very often the following situation appears: an existence of the asymptotics ε → 0 implies an existence of the asymptotics ε → ∞ (or, in a more general sense, ε → a and ε → b). Therefore, an idea of constructing a single solution valid for a whole interval of parameter ε changes is very attractive. In other words, we discuss a problem of asymptotically equivalent function constructions possessing for ε → a and ε → b a known asymptotic behavior. The defined problems are very important from the point of view of both theoretical and applied sciences. In this work, we review the state-of-the-art, by presenting the existing methods and by pointing out their advantages and disadvantages, as well as the fields of their applications. In addition, some new methods are also proposed. The methods are demonstrated on a wide variety of static and dynamic solid mechanics problems and some others involving fluid mechanics. This review article contains 340 references.


2011 ◽  
Vol 7 ◽  
pp. 179-197 ◽  
Author(s):  
Ranjana Aggarwal ◽  
Vinod Kumar ◽  
Rajiv Kumar ◽  
Shiv P Singh

The biological and medicinal properties of 5-aminopyrazoles have prompted enormous research aimed at developing synthetic routes to these heterocyles. This review focuses on the biological properties associated with this system. Various synthetic methods developed up to 2010 for these compounds are described, particularly those that involve the reactions of β-ketonitriles, malononitrile, alkylidenemalononitriles and their derivatives with hydrazines, as well as some novel miscellaneous methods.


Author(s):  
Shailja Choudhary ◽  
Hemlata Kaurav ◽  
Gitika Chaudhary

Ferula is considered as the third largest genus of the family Apiaceae (Umbelliferae) which consists of 180-185 species. Asafoetida is defined as the oleo-resin gum extracted from the stem and rhizome of the Ferula asafetida plant. It is commonly called Hing or Devil's dung. It is a native species of Iran, Afghanistan and Pakistan. In Ayurveda, it is described as an analgesic agent and is mentioned in Charak Samhita. It carries a strong, tenacious and sulfurous odor. It is also used as a spice or as a condiment in various cookeries as a flavor like in curries, fresh vegetables, meat, pickles and pulses. Asafetida is distinguished as asafetida hing (hing) and asafetida (hingra). Traditionally, the plant is used to treat diseases like whooping cough, asthma, bronchitis, epilepsy, ulcer, stomachache, flatulence, bronchitis, antispasmodic, intestinal parasites, influenza and weak digestion. The main active constituents present in the Ferula asafetida plant are resins, gums and essential oils. From the reported studies it was found that the plant possesses various therapeutic and pharmacological properties like antioxidant, antimicrobial, antifungal, antiviral, antitumor, antimicrobial, antidiabetic, antispasmodic, hypertensive, hepatoprotective, neuroprotective and antiviral properties. In this review article, attempts have been made to describe the overall plant based on its modern and traditional view.


2021 ◽  
Vol 9 (8) ◽  
pp. 1819-1823
Author(s):  
Priyanka. B. Patil ◽  
Usha M ◽  
Ravi R Chavan

The main objective of this review article is to discuss the therapeutic uses of Rudra Parpati and to discuss the different pharmacological properties and therapeutic uses of isolated constituent drugs of Rudra Parpati. The authentic subject material has been reviewed from Ayurveda and modern medical literature. Different research and review articles were searched in different journals. The subject material has also been searched on the internet. This review is mainly focused on different aspects of herbo mineral Ayurvedic formulation Rudra Parpati. Parpati rasayana is one among Chaturvidha Rasayana Kalpa which is very effective and can be prepared with less effort. In Ayurveda Rudra Parpati is mentioned in the management of Kasa/cough. Though it is popular as only Parpati used in Kharapaka form & having an indication other than Grahani but still an unexplored treasure with unique therapeutic utility. Hence an attempt has been made to address the therapeutic uses of Rudra Parpati and the probable mode of action of its constituent drugs. Keywords: Rudraparpati, Vataja Kasa.


Sign in / Sign up

Export Citation Format

Share Document