scholarly journals Improving the Dynamic Characteristics of Precision Lathes Used in the Repair of Agricultural Machinery

Author(s):  
D.E. Molochnikov ◽  
◽  
R.Sh. Halimov ◽  
N.P. Ayugin ◽  
I.R. Salakhutdinov ◽  
...  

A model of a friction unit of a lathe in the form of a thin layer of material of a honeycomb structure is described to determine the dynamic characteristics of a movable carriage to guide joint. The analysis of the mathematical model of friction for different sliding pairs with varying load and sliding speed is performed. It is shown that the presence of an abrasive impurity in the lubrication of the guide enhances the effect of the low-frequency component of the carriage vibrations on the dynamics of the machine tool and the presence of pockets for retaining the lubricant in the joint of the guide makes it possible to reduce the amplitude of the longitudinal vibrations of the carriage to 30-50 %.

2021 ◽  
Vol 11 (9) ◽  
pp. 4130
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Václav Píštěk ◽  
Pavel Kučera

The study deals with determination of the vertical load on the carrying structure of a flat wagon on the 18–100 and Y25 bogies using mathematic modelling. The study was made for an empty wagon passing over a joint irregularity. The authors calculated the carrying structure of a flat wagon with the designed parameters and the actual features recorded during field tests. The mathematical model was solved in MathCad software. The study found that application of the Y25 bogie for a flat wagon with the designed parameters can decrease the dynamic load by 41.1% in comparison to that with the 18–100 bogie. Therefore, application of the Y25 bogie under a flat wagon with the actual parameters allows decreasing the dynamic loading by 41.4% in comparison to that with the 18–100 bogie. The study also looks at the service life of the supporting structure of a flat wagon with the Y25 bogie, which can be more than twice as long as the 18–100 bogie. The research can be of interest for specialists concerned with improvements in the dynamic characteristics and the fatigue strength of freight cars, safe rail operation, freight security, and the results of the research can be used for development of innovative wagon structures.


2014 ◽  
Vol 986-987 ◽  
pp. 810-813
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.


Author(s):  
R Maiti ◽  
R Saha ◽  
J Watton

The steady state and dynamic characteristics of a two-stage pressure relief valve with proportional solenoid control of the pilot stage is studied theoretically as well as experimentally. The mathematical model is studied within the MATLAB-SIMULINK environment and the non-linearities have been considered via the use of appropriate SIMULINK blocks. The detailed modelling has resulted in a good comparison between simulation and measurement, albeit assumptions had to be made regarding the solenoid dynamic characteristic based upon practical experience. The use of this characteristic combined with additional dynamic terms not previously considered allows new estimations of internal characteristics to be made such as the damping flowrate. The overall dynamic behaviour has been shown to be dominated by the solenoid characteristic relating force to applied voltage.


2013 ◽  
Vol 390 ◽  
pp. 242-245 ◽  
Author(s):  
Alexander V. Chekanin

The article deals with the actual problem of improving the accuracy of determining the dynamic characteristics of beam structures. To solve such problems the displacement method is used. Defining matrices are calculated with the Godunovs scheme. Numerical solutions in this case can be obtained practically with any accuracy within accepted hypotheses of the mathematical model of the calculated object. This suggests that the resulting solutions are standard. The examples of determining the natural frequencies of vibrations of beam structures that demonstrate an extremely high accuracy of the proposed algorithm are given.


2012 ◽  
Vol 268-270 ◽  
pp. 1517-1522 ◽  
Author(s):  
Guo Jin Chen ◽  
Ting Ting Liu ◽  
Ni Jin ◽  
You Ping Gong ◽  
Huo Qing Feng

The logistics and loading machinery is the typical hydromechatronics integrated system. How to solve the reasonable power match in the driving and lifting process of the logistics and loading machinery, we need to establish the mathematical model of the driving and lifting system, and analyze their control characteristics. Aiming at the load requirements for different operating conditions, this paper studies respectively the dynamic characteristics of the driving and lifting system. Through simulation and computation, the control methods and strategies based on the best performance are proposed. That lays the foundation for the optimization design of the logistics and loading machinery.


2013 ◽  
Vol 726-731 ◽  
pp. 3128-3131
Author(s):  
Zhao Wang Xia ◽  
Yuan Yuan Fang

Particle damping is a method for improving damping of a dynamic system by means of energy dissipation due to repeated collisions of a free mass on the base structure. In this paper, the theoretical investigations carried out to study and characterize damping with respect to the level of base excitation. The mathematical model consists of a particle damping system. The response obtained from the mathematical model for the drum brake and paticle damper. Here the effect of particle damping is studied for low frequency and high amplitude excitation. Optimum parameters are determined for design of impact damper based on the mathematical model. A good match is obtained by theoretical results.


2021 ◽  
Vol 2021 (2) ◽  
pp. 91-99
Author(s):  
O. Markova ◽  
◽  
H. Kovtun ◽  
V. Maliy ◽  
◽  
...  

The problem of high-speed railway transport development is important for Ukraine. In many countries articulated trains are used for this purpose. As the connections between cars in such a train differ from each other, to investigate its dynamic characteristics not a separate car, but a full train vibrations model is necessary. The article is devoted to the development of the mathematical model for articulated passenger train spatial vibrations. The considered train consists of 7 cars: one motor-car, one transitional car, three articulated cars, one more transitional car and again one motor-car. Differential equations of the train motion along the track of arbitrary shape are set in the form of Lagrange’s equations of the second kind. All the necessary design features of the vehicles are taken into account. Articulated cars have common bogies with adjoining cars and a transfer car and the cars are united by the hinge. The operation of the central hinge between two cars is modeled using springs and dampers acting in the horizontal and vertical directions. Four dampers between two adjacent car-bodies act as dampers for pitching and hunting and are represented in the model by viscous damping. The system of 257 differential equations of the second order is set, which describes the articulated train motion along straight, curved, and transitional track segments with taking into account random track irregularities. On the basis of the obtained mathematical model the algorithm and computational software has been developed to simulate a wide range of cases including all possible combinations of parameters for the train elements and track technical state. The study of the train self-exited vibrations has shown the stable motion in all the range of the considered speeds (40 km/h – 180 km/h). The results obtained at the train motion along the track maintained for the speedy motion have shown that all the dynamic characteristics and ride quality index insure train safe motion and comfortable conditions for the travelling passengers.


Sign in / Sign up

Export Citation Format

Share Document