Monte Carlo simulation when interpreting data of low frequency seismic sounding

Author(s):  
K.V. Syuraeva ◽  
◽  
R.A. Eremin ◽  
A.A. Podyachev ◽  
◽  
...  
2011 ◽  
Vol 44 (3) ◽  
pp. 585-594 ◽  
Author(s):  
T. Malcherek

The order–disorder contributions to the ferroelectric properties of Cd2Nb2O7(CNO) have been studied by Monte Carlo simulation of a 12-state modified Potts model on the pyrochlore lattice. Spin configurations obtained by these simulations are mapped to local Nb displacements. Secondary Cd displacements normal to the Nb displacement directions are considered as well. The model correctly reproduces diffuse scattering experimentally observed in CNO. A first-order phase transition is observed forkTp/J= 0.3891 (kis the Boltzmann constant,Tpis the model phase transition temperature andJis the interaction energy). To further adapt the model to the properties of CNO, coupling of local Nb displacements to theT2usoft mode is simulatedviathe addition of an appropriate field term in the model Hamiltonian. The critical temperatureTcof the soft mode is scaled tokTc/J= 0.3704. Similarities to experimental observations,i.e.the occurrence of stable domains with {100} boundaries, as well as spontaneous polarization along the cubic 〈100〉 and 〈110〉 directions, indicate thatTpcan be associated with the transition temperatureT1= 205 K in CNO. Frequency dispersion of the dielectric permittivity of CNO can be attributed to the low-frequency switching of correlated chains of Nb displacement that remain partially disordered in the temperature range between 195 and ∼100 K.


2013 ◽  
Vol 13 (18) ◽  
pp. 9159-9168 ◽  
Author(s):  
S. Palit ◽  
T. Basak ◽  
S. K. Mondal ◽  
S. Pal ◽  
S. K. Chakrabarti

Abstract. X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~60 to 100 km) in excess of what is expected to occur due to a quiet sun. Very low frequency (VLF) radio wave signals reflected from the D-region of the ionosphere are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class flare and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the D-region of the ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the change in VLF signal. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.


Author(s):  
Pavel Shiktorov ◽  
Viktoras Gruzinskis ◽  
Evgenij Starikov ◽  
Christophe Palermo ◽  
Jeremie Torres ◽  
...  

2013 ◽  
Vol 13 (3) ◽  
pp. 6007-6033 ◽  
Author(s):  
S. Palit ◽  
T. Basak ◽  
S. K. Mondal ◽  
S. Pal ◽  
S. K. Chakrabarti

Abstract. X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~ 60 to 100 km) in excess of what is expected from a quiet sun. Very Low Frequency (VLF) radio wave signals reflected from the D region are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the lower ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the VLF signal change. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document