scholarly journals Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry

2013 ◽  
Vol 13 (18) ◽  
pp. 9159-9168 ◽  
Author(s):  
S. Palit ◽  
T. Basak ◽  
S. K. Mondal ◽  
S. Pal ◽  
S. K. Chakrabarti

Abstract. X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~60 to 100 km) in excess of what is expected to occur due to a quiet sun. Very low frequency (VLF) radio wave signals reflected from the D-region of the ionosphere are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class flare and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the D-region of the ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the change in VLF signal. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.

2013 ◽  
Vol 13 (3) ◽  
pp. 6007-6033 ◽  
Author(s):  
S. Palit ◽  
T. Basak ◽  
S. K. Mondal ◽  
S. Pal ◽  
S. K. Chakrabarti

Abstract. X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~ 60 to 100 km) in excess of what is expected from a quiet sun. Very Low Frequency (VLF) radio wave signals reflected from the D region are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the lower ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the VLF signal change. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caitano L. da Silva ◽  
Sophia D. Salazar ◽  
Christiano G. M. Brum ◽  
Pedrina Terra

AbstractOptical observations of transient luminous events and remote-sensing of the lower ionosphere with low-frequency radio waves have demonstrated that thunderstorms and lightning can have substantial impacts in the nighttime ionospheric D region. However, it remains a challenge to quantify such effects in the daytime lower ionosphere. The wealth of electron density data acquired over the years by the Arecibo Observatory incoherent scatter radar (ISR) with high vertical spatial resolution (300-m in the present study), combined with its tropical location in a region of high lightning activity, indicate a potentially transformative pathway to address this issue. Through a systematic survey, we show that daytime sudden electron density changes registered by Arecibo’s ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). These changes typically correspond to electron density depletions in the D and E region. The survey also shows that these disturbances are different than the ones associated with solar flares, which tend to have longer duration and most often correspond to an increase in the local electron density content.


2020 ◽  
Vol 240 ◽  
pp. 07003
Author(s):  
Adam Aqasha ◽  
Andrien Zheng ◽  
Sneha Athreya ◽  
Hoe Teck Tan

Low-frequency radio telescopes are cheap and useful devices for the investigation of terrestrial and extra-terrestrial emissions. These emissions come either from the Sun and the planet Jupiter to terrestrial emissions. This project aims to investigate the Very Low Frequency (VLF) waves from mid-August to October 2019 using Radio JOVE (20 MHz) and SSID (3-30 kHz) to observe for the occurrence of solar flares and see how if the radio telescopes that the team set up is reliable. This will allow us future students aspiring to learn about astronomy to examine solar flares in detail during the upcoming solar maximum. Not many flares were detected as this period happens to be a solar minimum. However, a series of flares occurred between 30 September 2019 and 1 October 2019, which the telescopes have been able to detect, particularly SSID.


Solar Physics ◽  
2019 ◽  
Vol 294 (8) ◽  
Author(s):  
Daneele S. Tusnski ◽  
Sergio Szpigel ◽  
Carlos Guillermo Giménez de Castro ◽  
Alexander L. MacKinnon ◽  
Paulo José A. Simões

2015 ◽  
Vol 31 (8) ◽  
pp. 861-874 ◽  
Author(s):  
M.A. Bernal ◽  
M.C. Bordage ◽  
J.M.C. Brown ◽  
M. Davídková ◽  
E. Delage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document