scholarly journals Effect of salt and water stress on gas exchange, dry matter production and K+/NA+ ions selectivity in soybean

2017 ◽  
Vol 42 (3) ◽  
pp. 487-501 ◽  
Author(s):  
MSA Khan ◽  
MA Karim ◽  
MM Haque ◽  
AJMS Karim ◽  
MAK Mian

The experiment was conducted in a vinylhouse at the Banghabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh during January to May, 2012 to evaluate the effect of salt and water stress on gas exchange characters, dry matter production and K+/Na+ ions selectivity in three selected soybean genotypes, namely Galarsum, BD 2331 and BARI Soybean-6. The genotypes were exposed to six treatments viz. (i) control (tap water), (ii) water shortage (irrigation with 70% depletion of available soil water when leaf began to wilt at 10:00 am), (iii) 50 mM NaCl irrigation, (iv) 50 mM NaCl irrigation + water shortage, (v) 75 mM NaCl irrigation, and (vi) 75 mM NaCl irrigation + water shortage conditions. The results revealed that 75 mM NaCl salt + water stress treatment drastically reduced stomatal conductance, photosynthesis and transpiration rate irrespective of soybean genotypes. However, the genotype Galarsum showed minimum transpiritional water loss (1.45 mmol H2O m-2 s-1) and maximum photosynthesis (20.45 μmol CO2 m-2 s-1) as compared to BD 2331 and BARI Soybean-6 under 75 mM NaCl salt + water stress condition. Combined salt and water stress caused greater inhibition of shoot growth than either of the two in soybean. The shoot dry weights were decreased to 24.58, 23.00 and 21.57% of the control in Galarsum, BD 2331 and BARI Soybean-6, respectively at 75 mM NaCl salt + water stress. The genotype Galarsum accumulated higher amount of K+ (1.19%) and lower amount of Na+ ( 0.11%) in leaf tissue under 75 mM NaCl salt + water stress. Results indicated that the genotype Galarsum was more capable to cope with the high levels of salt under water stress condition than the other two genotypes.Bangladesh J. Agril. Res. 42(3): 487-501, September 2017

OENO One ◽  
2007 ◽  
Vol 41 (2) ◽  
pp. 85 ◽  
Author(s):  
Imene Toumi ◽  
Wissal M'Sehli ◽  
Soumaya Bourgou ◽  
Neila Jallouli ◽  
Asma Bensalem-Fnayou ◽  
...  

<p style="text-align: justify;"><strong>Aims</strong>: The responses of two Vitis vinifera cultivars (Cardinal and Superior Seedless) and two rootstocks (110R and SO4) to drought, the effect of grafting and the interactions of scion/rootstock were investigated.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The vines were subjected to a progressive water stress in greenhouse controlled conditions. At the end of the water stress treatments, physiological analyses were carried out (stem water potential, dry matter production, soluble sugars, proline as well as ions Na+ and K+). Drought was expressed by the drop of the stem water potential in the stressed vines as compared to their controls. Furthermore, tolerance and sensitivity were linked to the accumulation of soluble sugars and proline as well as the equilibrium of K+ and Na+ in the leaves.</p><p style="text-align: justify;"><strong>Conclusion</strong>: When ungrafted, Cardinal was more tolerant to water stress than Superior Seedless. The grafted vines exhibited more vigour, moreover, the combination of Cardinal with SO4 and Superior Seedless with 110R revealed to be the advantageous associations under water stress.</p><p style="text-align: justify;"><strong>Significance and impact of study</strong>: This work has been carried out to investigate the differential responses of grapevine cultivars to drought stress and the impact of grafting under water shortage conditions.</p>


Agro-Science ◽  
2015 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
S Ovie ◽  
GU Nnaji ◽  
PO Oviasogie ◽  
PE Osayande ◽  
P Irhemu

2013 ◽  
Vol 31 (2) ◽  
pp. 291-302 ◽  
Author(s):  
F.B. Cerqueira ◽  
E.A.L. Erasmo ◽  
J.I.C. Silva ◽  
T.V. Nunes ◽  
G.P. Carvalho ◽  
...  

The objective of this study was to evaluate the competitiveness of two cultivars of upland rice drought-tolerant, cultured in coexistence with weed S. verticillata, under conditions of absence and presence of water stress. The experiment was conducted in a greenhouse at the Experimental Station of the Universidade Federal de Tocantins, Gurupi-TO Campus. The experimental design was completely randomized in a factorial 2 x 2 x 4 with four replications. The treatments consisted of two rice cultivars under two water conditions and four densities. At 57 days after emergence, were evaluated in rice cultivars and weed S. verticillata leaf area, dry weight of roots and shoots and total concentration and depth of roots. Was also evaluated in rice cultivars, plant height and number of tillers. Water stress caused a reduction in leaf area, the concentration of roots and vegetative components of dry matter (APDM, and MSR MST) of rice cultivars and Jatoba Catetão and weed S. verticillata. The competition established by the presence of the weed provided reduction of all vegetative components (MSPA, and MSR MST) of cultivars and Jatoba Catetão. It also decreased the number of tillers, the concentration of roots and leaf area. At the highest level of weed competition with rice cultivars, a greater decrease in vegetative components and leaf area of culture, regardless of water conditions.


2019 ◽  
Vol 11 (14) ◽  
pp. 1684 ◽  
Author(s):  
Chao Zhang ◽  
Jiangui Liu ◽  
Taifeng Dong ◽  
Elizabeth Pattey ◽  
Jiali Shang ◽  
...  

Accurate information of crop growth conditions and water status can improve irrigation management. The objective of this study was to evaluate the performance of SAFYE (simple algorithm for yield and evapotranspiration estimation) crop model for simulating winter wheat growth and estimating water demand by assimilating leaf are index (LAI) derived from canopy reflectance measurements. A refined water stress function was used to account for high crop water stress. An experiment with nine irrigation scenarios corresponding to different levels of water supply was conducted over two consecutive winter wheat growing seasons (2013–2014 and 2014–2015). The calibration of four model parameters was based on the global optimization algorithms SCE-UA. Results showed that the estimated and retrieved LAI were in good agreement in most cases, with a minimum and maximum RMSE of 0.173 and 0.736, respectively. Good performance for accumulated biomass estimation was achieved under a moderate water stress condition while an underestimation occurred under a severe water stress condition. Grain yields were also well estimated for both years (R2 = 0.83; RMSE = 0.48 t∙ha−1; MRE = 8.4%). The dynamics of simulated soil moisture in the top 20 cm layer was consistent with field observations for all scenarios; whereas, a general underestimation was observed for total water storage in the 1 m layer, leading to an overestimation of the actual evapotranspiration. This research provides a scheme for estimating crop growth properties, grain yield and actual evapotranspiration by coupling crop model with remote sensing data.


Sign in / Sign up

Export Citation Format

Share Document