scholarly journals Carvedilol Matrix Tablet: Formulation and In Vitro Assessment

2020 ◽  
Vol 23 (1) ◽  
pp. 26-31
Author(s):  
Joya Boidya ◽  
Ikramul Hasan ◽  
Md Selim Reza

The present study was conducted for preparing and assessing different in-vitro characteristics of hydrophilic polymer based matrix tablets of carvedilol. Nine formulations of matrix tablet were prepared using three hydrophilic polymers having 1% of three different dissolution enhancers. The matrix formers were sodium-carboxy methyl cellulose, Methocel K4M CR, Methocel K100M CR and the dissolution enhancers were PEG 6000, Poloxamer 188 and Kollidon-CLSF. Formulations F-10, F- 13 and F-16 contained PEG 6000 as dissolution enhancer, formulations F-11, F-14 and F-17 contained Poloxamer 188 and formulations F-12, F-15 and F-18 contained Kollidon-CLSF. Tablet granules were evaluated for bulk density (0.293 ± 0.012 to 0.310 ± 0.004 g/ml), tapped bulk density (0.368 ± 0.013 to 0.380 ± 0.012 g/ml) and compressibility index (16.612 ± 1.868 to 22.834 ± 5.426). The data indicated satisfactory flow properties of granules during compression. The tablets were subjected to thickness (1.79±0.04mm), hardness (11.46 ± 1.06 kg/cm), and friability (0.26 ± 0.06%) measurements. The in vitro dissolution study was carried out for 12 hrs using USP type II dissolution apparatus in 6.8 buffer as the dissolution medium where release mechanisms were subjected to zero order, first order, Korsmeyer-Peppas, Hixson-Crowell and Higuchi kinetic studies. The order of dissolution enhancing power was PEG 6000 > Poloxamer 188 >Kllidon-CLSF. The drug release from the tablets followed erosion mechanisms. Among all the formulation F-13, F-14 and F-17 exhibited USP complied in vitro dissolution profiles. Bangladesh Pharmaceutical Journal 23(1): 26-31, 2020

1970 ◽  
Vol 1 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Tasbira Jeseem ◽  
Rumana Jahangir ◽  
DM Mizanur Rahman ◽  
Abu Shara Shamsur Rouf

An attempt was to formulate the oral sustained release Metformin hydrochloride matrix tablets by using hydroxyl methyl cellulose polymer (HPMC) as rate controlling factor and to evaluate drug release parameters as per various release kinetic models. The tablets were prepared by direct compression method. The granules were evaluated for angle of repose, loose bulk density, tapped bulk density, compressibility index, total porosity, drug content etc. and showed satisfactory results. The tablets were subjected to thickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolution study was carried out for 8 hours using United States Pharmacopoeia USP 2 (paddle-type dissolution apparatus) in phosphate buffer (pH 7.4) as dissolution media. All the tablet formulations showed acceptable pharmacotechnical properties and complied with pharmacopoeial specifications. The release mechanisms were explored and explained with zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The results indicated that a decrease in release kinetics of the drug was observed by increasing the polymer concentration. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. The drug release followed both diffusion and erosion mechanism in all cases. Besides, this study explored both of the optimum concentration and the effect of polymer on drug release pattern from the tablet matrix for 8 hours period. Key Words: Metformin HCl, Sustained release, Hydrophilic matrix, HPMC, Direct compression   doi:10.3329/sjps.v1i1.1808 S. J. Pharm. Sci. 1(1&2): 51-56


2020 ◽  
Vol 23 (1) ◽  
pp. 10-16
Author(s):  
Ramesh Kandel ◽  
Tushar Saha ◽  
Zia Uddin Masum ◽  
Jakir Ahmed Chowdhury

Fenofibrate, a water insoluble drug was used to prepare matrix tablet with four different viscosity grades of Hydroxypropyl Methylcellulose (HPMC) which were Methocel K4M CR, Methocel K15M CR, Methocel K100M CR and Methocel K100LV CR. The concentration of those excipients was 5, 10, 20, and 40% (w/w), respectively. The content of drug in a fixed quantity of powder in every formulation was ranged between 96.47 to 104.78 %. The dissolution study was done by using USP dissolution apparatus II. The kinetics of release was analyzed by using zero-order, first order, Korsmeyer-Peppas, Higuchi and Hixon-crowell equations to explain the drug release mechanism from the matrix tablets. In-vitro dissolution profile of matrix tablets were dependent upon the HPMC concentration and dissolution was rapid for tablets containing lower polymer proportion i.e. 5,10, and 20% Percentage (w/w) HPMC than those containing 40% (w/w) HPMC. Bangladesh Pharmaceutical Journal 23(1): 10-16, 2020


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 398-403
Author(s):  
Nidhi Kumari Pandey ◽  
Sailesh Kumar Ghatuary ◽  
Amit Dubey ◽  
Prabhat Kumar Jain

The objective of the present work was to develop Gastro retentive dosage forms which would remain in the stomach and upper part or GIT for a prolonged period of time thereby maximizing the drug release at desired site within the time before GRDFs left the stomach and upper part of the GIT, has provoked a great deal of increased interest in the formulation of such drug as floating drug delivery systems. Levofloxacin, (BCS class I) is a fluoroquinolone anti-bacterial agent. The rationale for the formulation of floating matrix tablet are acidic solubility of levofloxacin, residence of Halicobactor pylori mainly in sub region of stomach and the overdosing associated adverse effect due to continuous intake of drug in acute infection. A simple visible spectrophotometric method was employed for the estimation of levofloxacin at 294 nm and Beer’s law is obeyed in the concentration range of 2-10 μg /ml. Floating matrix tablet of levofloxacin was prepared by direct compression method using different polymers like hydroxyl propyl methyl cellulose (HPMC K4) and carbopol 934 as matrix formation polymers, sodium bicarbonate and citric acid was used as gas generating agents. The FTIR spectra of the levofloxacin and other excipients alone and in combination show the compatibility of the drug and excipients. Six formulations of different polymer percentages were formulated (F1-F6). Pre-compression parameters were evaluated. The influence of matrix forming agents and binary mixtures of them on levofloxacin release was investigated. The formulated tablets were characterized by hardness, friability, thickness, weight variation and in vitro drug release. The formulated tablets had acceptable physicochemical characters. The data obtained from the in-vitro dissolution studies of optimized batch F4were fitted in different models. The optimized formulation F4 showed 99.25% drug content and swelling index of 79.85 %. Drug release mechanism was found to be first order kinetics. Levofloxacin floating tablets exhibited increased gastric residence time, there by improved bioavailability and therapeutic effect of the drug.  


2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


Author(s):  
Mallikarjuna M. ◽  
Ramakrishna A.

In the present investigation planned to study the less explored sterculia gum as matrix carrier of Budesonide to colon. Developed the formulations from B1 to B4 contains alone sterculia gum and its proportion increased gradually in the formulation. The formulations B5 to B10 contain the sterculia gum in combination with Eudragit S 100 and the hydrophilic, hydrophobic polymer. The budesonide core in coat matrix tablets was prepared by direct compression method. The powder bed of the formulations is evaluated for pre compressional characteristics like bulk density, tapped density, compressibility index and angle of repose. The compressed budesonide core in coat matrix tablets were evaluated for post compressional characteristics like thickness, diameter, hardness, disintegration, friability and to understand the drug release pattern and to correlate the in vivo condition, the in vitro dissolution performed in three different gastro intestinal pH at 1.2, pH 7.4 and pH 6.8 with and without 4% rat cecal content. The in vitro dissolution results of formulations ascertain that sterculia gum alone in formulation uncontrolled the drug release in first 5 hrs and carried lesser amount of drug to colon. The formulations B8 in the first 5 hours released 4.3% and carried the larger amount of drug to colon and in absence of rat cecal content released 90% and in presences of 4% rat cecal content released 99% of drug, indicating the sterculia gum undergoes enzymatic degradation and this formulation is considered as potential in targeting the budesonide to colon in the local ulcerative colitis


Author(s):  
CHINNA ESWARAIAH M ◽  
JAYA S

Objective: The objective of the present study was to formulate the effervescent floating matrix tablet of metronidazole and to evaluate the effect of varying concentrations of hydrophilic polymers on drug release. Methods: Drug excipients interaction was studied by Fourier transform infrared spectrophotometer. The effervescent floating matrix tablets were prepared by direct compression technique using hydroxypropyl methylcellulose (HPMCK4) and xanthan gum alone and in combination as release retardants. Microcrystalline cellulose was used as diluent. Sodium bicarbonate was used as effervescent agent. The prepared matrix tablets were evaluated for their physicochemical parameters such as weight variation, hardness, friability, content uniformity, buoyancy time, and in vitro dissolution. Results: Micromeritic properties and post-compression parameters were evaluated and all the parameters were found within the acceptable limit. The drug release data were subjected to different models to evaluate release kinetics and mechanism of drug release. The matrix tablets prepared with xanthan gum and a mixture of xanthan gum and HPMCK4 were retarded the drug release up to 12 h. The release mechanism of metronidazole was evaluated on the basis of release exponent n value in Peppas model. The n value of the formulations ranged from 0.46 to 0.89 which indicated Case II transport and zero-order release. Conclusion: Floating matrix tablet is the simple, efficient, and economic method to sustain the release of metronidazole to eradicate Helicobacter pylori in peptic ulcer disease.


Author(s):  
Roshan Pradhan ◽  
Uttam Budhathoki ◽  
Panna Thapa

p>A hydroxypropyl methylcellulose (HPMC K4M, HPMC K15M, and HPMC K100M) matrix tablet containing Indomethacin along with mannitol was formulated as a function of HPMC viscosity, and was compared with the commercial products. The release characteristics of the matrix tablet were investigated in the intestinal fluid, 6.8 pH phosphate buffer for 12 hours. The formulated products and two marketed products as reference sample were studied for its different physicochemical parameters and in vitro dissolution studies. It was found that the drug release profile decreases with increase in viscosity of polymer and, with increase polymer level in the formulations. Matrix tablets formulated employing Drug:HPMC K15M:mannitol::1:0.25:1 and Drug:HPMC K15M:mannitol::1:0.25:2 gave slow release of indomethacin spread over 12 hours and their dissolution profiles were compared with the Indian marketed product. The dissolution profiles of both the formulations were similar to the dissolution profile of the marketed product, the similarity factor being 74.59 and 68.04 respectively. The dissolution profiles of formulations containing same viscosity grade of HPMC in remarkably different concentrations and different viscosity grade of HPMC in same concentrations were different. Key words: Indomethacin; Controlled release; Hydroxypropyl methyl cellulose; Mannitol; Dissolution. DOI: 10.3126/kuset.v4i1.2884 Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 55-67


2002 ◽  
Vol 70 (2) ◽  
pp. 189-198
Author(s):  
Genç Lütfi ◽  
Hegazy Nahed ◽  
Arica Betül

Matrix tablets of ketorolac trometharnine (KT) were prepared by direct compression technique and Carbopol 934, 940 and 1342 have been used as polymers in different concentrations (5-15 % ). For the quality control of tablets; physical tests as crushing strength, diameter-height ratio and fkiability, KT amount assay and in vitro dissolution techniques were performed and dissolution profiles were plotted and evaluated kinetically. The in vitro release kinetics of ten different formulations of KT matrix tablet were studied at pH 1.2 and pH 7.0 using the USP dissolution technique and apparatus with basket assembly. Dissolution results were evaluated kinetically and statistically. According to our results, different types and concentrations of carbopol to tablet formulations may effect in controlled drug release.


2005 ◽  
Vol 73 (1) ◽  
pp. 59-74
Author(s):  
Lütfi Genç ◽  
A. Kıran

Sustained release matrix tablets of clarithromycin were prepared using different polymers as Hydroxypropyl methylcellulose (H PMC), Carbopol 934 and Eudragit RL/PO by direct compression technique. For the quality control of these formulations, weight deviation, hardness, friability, diameter-height ratio, content uniformity of the active substance and in vitro dissolution technique were performed. HPLC was used for the assay of clarithromycin and the assay method was validated. Dissolution profiles of the tablets were plotted and evaluated kinetically. The effects on drug release of polymer type and concentrations were investigated by 23 factorial design. The tablets containing HPMC, Carbopol 934 and Eudragit RLIPO were found suitably to sustain drug release


Sign in / Sign up

Export Citation Format

Share Document