scholarly journals Soil Health as Influenced by Fertilizer Management in Rice Based Cropping System

2021 ◽  
Vol 24 (2) ◽  
pp. 119-131
Author(s):  
MM Haque ◽  
MR Islam ◽  
MS Rahman ◽  
MAR Sarkar ◽  
MAA Mamun ◽  
...  

Nutrient management influences soil health and crop productivity. Sustained crop production re-quires specific nutrient management options after a certain period. The objectives of this investigation were to examine the effects of inorganic and organic fertilization on yields and soil carbon budget under rice based cropping patterns in Bangladesh. The research data and informationhave been gen-erated based on previouslypublished, unpublished sources and own concept.Omission of K or im-balanced K are more influential for reduction in grain yield up to 47% in Boro (dry) season but N was most limiting up to 35% in T. Aman (wet) season. With existing fertilizer rates for growing rice, the balances of N and K are always negative. Balanced chemical fertilizer (NPKSZn) can be an option for improving crop productivity and maintain soil quality. Net ecosystem carbon (C) balances are posi-tive when 3 t ha-1 cow dung (CD), 2 t ha-1 poultry manure (PM) and 2 t ha-1 vermicompost (VC) are used in combination with chemical fertilizers. Soil amendments with organic nutrient sources (rice straw, CD, PM, VC, legume crops) and rice based cropping patterns such as T. Aman-Mustard-Boro, Boro-Fallow-Fallow, Jute-T. Aman-Fallow, Wheat-Mungbean-T. Aman, Grass pea- T. Aus-T. Aman and Potato-Boro-T. Aman can be beneficial in improving soil C budget, soil nutrient ratio, total crop production and maintenance of environmental health that will meet SDGs goal. Bangladesh Rice J. 24 (2): 119-131, 2021

Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 894
Author(s):  
Parijat Saikia ◽  
Kushal Kumar Baruah ◽  
Satya Sundar Bhattacharya ◽  
Chandrima Choudhury

Soil organic carbon (C) management in agricultural fields can act improve soil health and productivity. However, reports on the C release pattern and the interactive effects of plant physiological parameters on soil C storage from subtropical regions of the world where rice is cultivated as a dominant food crop are inadequate. The interactions between plant metabolism, soil C storage, and organic-based nutrient management schemes have been little studied. Hence, a study was undertaken in rainfed winter rice to evaluate the effects of different levels of organics (crop residue (CR) and farmyard manure (FYM)) along with inorganic (NPK) inputs in an alluvial soil. The experiment was conducted in a typical humid subtropical climate in north-eastern India. The CR of the preceding rice crop (pre-monsoon) and cow dung based FYM were used as organic inputs for monsoon rice, which were applied in various combinations with inorganic fertilisers. We studied the influence of these selected nutrient management schemes on soil health attributes, C storage, and plant parameters. The highest gain in C storage (11.65%) was in soil under 80% NPK + CR (5 t ha–1) + FYM (10 t ha–1) treatment. Correspondingly, significant improvement (P < 0.05) in total C, dissolved organic C, and nitrogen availability in soil was evident under this treatment leading to augmentation of soil organic matter status and the net amount of sequestered C in soil after two years of rice cultivation. Such improvements resulted in greater flag leaf photosynthesis, biomass accumulation, and grain yield than the conventionally managed crops. Overall, this research showcases that organic-dominated nutrient management not only restored soil health but was also able to compensate 20% of the recommended NPK fertilisation without penalty on crop yield.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 71 ◽  
Author(s):  
Sheetal Sharma ◽  
Rajeev Padbhushan ◽  
Upendra Kumar

Over years of intensive cultivation and imbalanced fertilizer use, the soils of the Indiansubcontinent have become deficient in several nutrients and are impoverished in organic matter.Recently, this region has started emphasizing a shift from inorganic to organic farming to managesoil health. However, owing to the steadily increasing demands for food by the overgrowingpopulations of this region, a complete shift to an organic farming system is not possible. The rice–wheat cropping system (RWCS) is in crisis because of falling or static yields. The nations of thisregion have already recognized this problem and have modified farming systems towardintegrated nutrient management (INM) practices. The INM concept aims to design farmingsystems to ensure sustainability by improving soil health, while securing food for the populationby improving crop productivity. Therefore, this paper was synthesized to quantify the impact androle of INM in improving crop productivity and sustainability of the RWCS in the context of theIndian subcontinent through meta-analysis using 338 paired data during the period of 1989–2016.The meta-analysis of the whole data for rice and wheat showed a positive increase in the grainyield of both crops with the use of INM over inorganic fertilizers only (IORA), organic fertilizersonly (ORA), and control (no fertilizers; CO) treatments. The increase in grain yield was significantat p < 0.05 for rice in INM over ORA and CO treatments. For wheat, the increase in grain yield wassignificant at p < 0.05 in INM over IORA, ORA, and CO treatments. The yield differences in theINM treatment over IORA were 0.05 and 0.13 Mg ha−1, respectively, in rice and wheat crops. Thepercent yield increases in INM treatment over IORA, ORA, and CO treatments were 2.52, 29.2, and90.9, respectively, in loamy soil and 0.60, 24.9, and 93.7, respectively, in clayey soil. The net returnsincreased by 121% (INM vs. CO) in rice, and 9.34% (INM vs. IORA) and 127% (INM vs. CO) inwheat crop. Use of integrated nutrient management had a positive effect on soil properties ascompared to other nutrient management options. Overall, the yield gain and maintenance of soilhealth due to INM practices over other nutrient management practices in RWCS can be a viablenutrient management option in the Indian subcontinent.


2020 ◽  
Vol 12 (23) ◽  
pp. 10214
Author(s):  
Muhammad Abid ◽  
Tahira Batool ◽  
Ghulam Siddique ◽  
Shafaqat Ali ◽  
Rana Binyamin ◽  
...  

Soil quality deterioration, especially in intensive cropping systems, has become a serious problem for crop productivity; consequently, strategies for sustainable crop production and soil health are urgently required. Experiments on fields were organized to investigate the impact of organic manures on crop productivity, soil physiochemical properties and soil water availability in a maize-based cropping system. The experiment consisted of five treatments, including organic manures (OM) and inorganic nitrogen, phosphorus and potassium (NPK) fertilizers applied separately and in combinations: NPK = 250-150-125 Kg/ha (recommended rate), farmyard manure (FYM) = 16 t/ha, poultry manure (PM) = 13 t/ha, NPK + FYM = 150-85-50 Kg/ha + 8.5 t/ha and NPK + PM = 150-85-50 Kg/ha + 7.0 t/ha. The results showed that the combination of OM with mineral fertilizers increased crop productivity, fertilizer use efficiency and yield sustainability indices over the treatments amended with sole application of mineral fertilizers and OM. The analysis of undisturbed soil samples during different crop growth stages revealed that the addition of OM decreased the bulk density and increased the pore volume of soil at the beds of 0–20 and 20–40 cm. The application of OM to the soil not only increased saturated hydraulic conductivity of the soil but also improved total available and readily available water contents to the plants, especially when FYM was included at 16 t ha−1. Soil-water retention properties recorded over the entire seven-day monitoring period following irrigation in the OM-amended treatments were consistently higher than the sole mineral NPK application treatments. When testing the soil nutrient status during different crop growth stages, it was noted that by adding OM into the soil not only the status of the organic carbon of soil, extractable N and K and available P contents is increased, but the duration of their availability to the plants are also enhanced. The results of the study show that organic manures addition is of major significance for maintaining soil quality and crop production sustainably, and should be advocated in the nutrient management strategies of intensive water- and nutrient-demanding cropping systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
I. Nur Arina ◽  
M. Y. Martini ◽  
S. Surdiana ◽  
R. Mohd Fauzi ◽  
S. Zulkefly

Global demand for food has always been on the increase due to the increase of the population in this world. Intercropping is one of the alternatives of agronomic practices that is widely practiced in ensuring food security and enhancing yield stability. Strip, mixed, and relay intercropping can be practiced to increase crop production. In addition to achieving a successful intercropping system, factors such as suitable crops, time of sowing, maturity of the crop, and plant density need to be considered before and during planting. Besides, practiced intercropping becomes a useful cropping system to increase efficient resource utilization, enhance biodiversity, promote soil health, enhance soil fertility, erosion control, yield advantage, weed, pest, and disease control, insurance against crop failure, ecosystem and modification of microclimate, market instability, and increase farmers income. Crop productivity in any types of cropping system implemented relies primarily on the interception of photosynthetically active radiation (PAR) of crop canopy and conversion of intercepted radiation into biomass or known as radiation use efficiency (RUE). Both PAR and RUE are important measurements that have significant roles in crop growth and development in which the accessibility of these radiation dynamics is connected with the leaf area index and crop canopy characteristics in maximizing yield as well as total productivity of the crop component in intercropping systems.


Author(s):  
J. G. Kinaichu ◽  
C. G. Nyaga ◽  
P. Njogu ◽  
E. G. Gatebe ◽  
E. G. Maina

In Kenya overuse of inorganic fertilizers have rendered soils in arable areas acidic leading to poor crop production and hence great risk of food insecurity. An alternative source of plant nutrients that can also address soil acidity is needed if the country is to be food secure. Bio slurry, a by-product from the biogas plant, can successfully be used to improve crop productivity and soil health. This study was conducted to determine the levels of macro and micro nutrients in bio-slurry from different feed stocks and compare with nutrients from conventional chemical fertilizers. Physical parameters were determined on site. The samples were digested using protein digestion method for nitrogen and acid digestion method for phosphorus, potassium, sodium and magnesium. Phosphorus was then determined using UV-Vis while metals a flame emission spectrophotometer was used. The levels of macro and micronutrients were found to be significantly high in bio slurry samples than in select inorganic fertilizers. This study indicates that bio slurry has basic pH and can be used to raise the pH of acidic soil upon prolonged application. In addition, pig waste slurry can serve better as a planting fertilizer due to its high P content while Cow dung slurry would best serve as a top dresser due to the high nitrogen content.


2020 ◽  
Author(s):  
Amare Aleminew ◽  
Melkamu Alemayehu

Soil is a non-renewable or finite resource and is the bank of nutrients for plant growth. Most soils in the tropical region including Ethiopia are highly weathered and infertile due to lower organic matter content and open nutrient cycling systems. These led to soil fertility depletion and crop productivity reduction in the country by different soil degradation agents. Therefore, the objective of this paper is to review soil fertility depletions and its management options under crop production perspectives in Ethiopia. The major drivers of soil fertility depletion are population pressure, land use pattern, free grazing of animals, lack of energy sources, land ownership and poor government policy problems. The major causes of soil fertility depletion are inadequate fertilizer use, complete removal of crop residues, continuous cropping systems, climate and soil types, lack of proper cropping systems and soil erosion and continuous cultivation. The promising technologies for improving soil fertility are integrated nutrient management, crop residue management, green manuring and cropping sequences, management of farmyard manure, applications of chemical fertilizers and soil amendments, agroforestry practices, applying conservation agriculture and application of soil-water conservation practices. Therefore, it needs a great attention by the community and the government to use innovative soil fertility management options to sustain soil fertility and crop productivity for the coming generations in the country forever enhancing nutrient input and recycling through following closed nutrient management systems in the cultivated lands.


2021 ◽  
Vol 9 (3) ◽  
pp. 160-165
Author(s):  
Sangam Panta ◽  
Dipika Parajulee

The world vision of no hunger target, food security, and zero poverty followed by raising standards of living of rural people through agricultural transformation is the greatest challenges faced by the agricultural planners worldwide. Due to the alarming state of population growth and cultivable land scarcity, change in agronomic practices which could bring a significant effect on crop production and productivity is urgently needed. The concept of using different sources of plant nutrients combined to check nutrient depletion, maintain soil health, and crop productivity, called INM, has a bright solution in this area. Recently several researchers introduced that integrated use of inorganic fertilizers, organic fertilizers, green manure, and bio-fertilizers is becoming an effective practice not only for increasing crop production and productivity but also for the better crop and soil health. In addition, INM helps to increase the activity of soil microorganisms and improves the soil physical, chemical and biological properties. So, INM create an economic eco-friendly environment by reducing the dependence on inorganic chemical fertilizers and improving the soil fertility, optimizing crop yield, maximizing profitability and ultimately making the agriculture sustainable. Lastly, INM is one of the good agricultural practices which needs to be followed by every conscious individual in order to maintain soil health, nutrient balance and to make the agriculture and environment more sustainable.  Int. J. Appl. Sci. Biotechnol. Vol 9(3): 160-165  


2021 ◽  
Vol 107 ◽  
pp. 103362
Author(s):  
Umme Aminun Naher ◽  
Md Mozammel Haque ◽  
Faruk Hossain Khan ◽  
Md Imran Ullah Sarkar ◽  
Tahmid Hossain Ansari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document