scholarly journals Integrated Nutrient Management (INM) in Soil and Sustainable Agriculture

2021 ◽  
Vol 9 (3) ◽  
pp. 160-165
Author(s):  
Sangam Panta ◽  
Dipika Parajulee

The world vision of no hunger target, food security, and zero poverty followed by raising standards of living of rural people through agricultural transformation is the greatest challenges faced by the agricultural planners worldwide. Due to the alarming state of population growth and cultivable land scarcity, change in agronomic practices which could bring a significant effect on crop production and productivity is urgently needed. The concept of using different sources of plant nutrients combined to check nutrient depletion, maintain soil health, and crop productivity, called INM, has a bright solution in this area. Recently several researchers introduced that integrated use of inorganic fertilizers, organic fertilizers, green manure, and bio-fertilizers is becoming an effective practice not only for increasing crop production and productivity but also for the better crop and soil health. In addition, INM helps to increase the activity of soil microorganisms and improves the soil physical, chemical and biological properties. So, INM create an economic eco-friendly environment by reducing the dependence on inorganic chemical fertilizers and improving the soil fertility, optimizing crop yield, maximizing profitability and ultimately making the agriculture sustainable. Lastly, INM is one of the good agricultural practices which needs to be followed by every conscious individual in order to maintain soil health, nutrient balance and to make the agriculture and environment more sustainable.  Int. J. Appl. Sci. Biotechnol. Vol 9(3): 160-165  

2021 ◽  
Vol 24 (2) ◽  
pp. 119-131
Author(s):  
MM Haque ◽  
MR Islam ◽  
MS Rahman ◽  
MAR Sarkar ◽  
MAA Mamun ◽  
...  

Nutrient management influences soil health and crop productivity. Sustained crop production re-quires specific nutrient management options after a certain period. The objectives of this investigation were to examine the effects of inorganic and organic fertilization on yields and soil carbon budget under rice based cropping patterns in Bangladesh. The research data and informationhave been gen-erated based on previouslypublished, unpublished sources and own concept.Omission of K or im-balanced K are more influential for reduction in grain yield up to 47% in Boro (dry) season but N was most limiting up to 35% in T. Aman (wet) season. With existing fertilizer rates for growing rice, the balances of N and K are always negative. Balanced chemical fertilizer (NPKSZn) can be an option for improving crop productivity and maintain soil quality. Net ecosystem carbon (C) balances are posi-tive when 3 t ha-1 cow dung (CD), 2 t ha-1 poultry manure (PM) and 2 t ha-1 vermicompost (VC) are used in combination with chemical fertilizers. Soil amendments with organic nutrient sources (rice straw, CD, PM, VC, legume crops) and rice based cropping patterns such as T. Aman-Mustard-Boro, Boro-Fallow-Fallow, Jute-T. Aman-Fallow, Wheat-Mungbean-T. Aman, Grass pea- T. Aus-T. Aman and Potato-Boro-T. Aman can be beneficial in improving soil C budget, soil nutrient ratio, total crop production and maintenance of environmental health that will meet SDGs goal. Bangladesh Rice J. 24 (2): 119-131, 2021


Author(s):  
Tanveer Ahmad Ahngar ◽  
Zahida Rashid ◽  
Raies Ahmad Bhat ◽  
Waseem Raja ◽  
Sadaf Iqbal ◽  
...  

Intensive agriculture and excessive use of external inputs are leading to degradation of soil and water resources and negatively affecting agricultural production. This review article aims to determine the role of conservation agriculture for sustaining soil quality and improving crop productivity. Conservation Agriculture (CA) practices cause prominent changes in physical, chemical and biological properties of soil compared to conventional agricultural practices. The improved bio-physico-chemical qualities of soil in turn, affect the ecosystem services and sustainability of crop production system through counterbalancing the climate variability with the help of increasing sink for carbon sequestration within the soil. There was significant interaction of tillage and cropping system on mineral nitrogen measured at the beginning of the cropping system. Mineral N contents were higher with manual tillage and no tillage systems compared with conventional tillage in the soybean maize rotation system. Conservation agriculture also helps in improving the crop production in a sustainable way hence there is an intense need of conservation agriculture which will not only meet the present and future demand of ever increasing population, but also seize degradation of environmental quality.


Author(s):  
Ayush Bahuguna ◽  
Sachin Sharma ◽  
Janardan Yadav

After the green revolution excessive use of inorganic fertilizers increased, which resulted in affecting the activities of soil microflora and macrofauna, thus posing an environmental risk and decreasing crop production. The use of organic sources which include biochar, carpet waste, FYM (Farmyard manure) and PGPR (Plant growth promoting rhizobacteria) may act as an important tool to sustainably increase soil organic matter, crop yield and improve soil health on a long-term basis. The results of application of biochar, carpet waste, farm yard manure (FYM) and PGPR showed that the combined application of biochar, carpet waste and PGPR significantly improved soil properties such as organic carbon, nitrogen(N), phosphorus(P), potassium(K), dehydrogenase, alkaline phosphatase activity and microbial population. The enzymatic activity of soil was highly positively correlated with the physicochemical properties of soil. Therefore, it can be concluded that the combination of biochar, carpet waste, FYM and PGPR may increase and sustain the soil properties and crop productivity over time.


2021 ◽  
Vol 13 (9) ◽  
pp. 4919
Author(s):  
Kevin Muyang Tawie Sulok ◽  
Osumanu Haruna Ahmed ◽  
Choy Yuen Khew ◽  
Jarroop Augustine Mercer Zehnder ◽  
Mohamadu Boyie Jalloh ◽  
...  

Sustaining soil health cannot be divorced from sustainable crop production. Organic, or natural, farming is being promoted as a good sustainable agriculture practice. One aspect of organic farming that could significantly enhance and sustain soil health, soil quality, and crop productivity is the use of high-quality soil conditioners or organic amendments produced from agro-wastes. Thus, the objective of this study was to characterize the chemical and biological properties of selected agro-wastes with potential for use as organic amendments in sustaining soil health. Standard procedures were used to produce and characterize the soil conditioners, namely fermented plant juice (FPJ), fermented fruit juice (FFJ), palm kernel shell (PKS) biochar, and kitchen waste (KW) compost. The fermented juices (FPJ and FFJ), PKS biochar, and KW compost exhibited chemical and biological properties with good potential as soil conditioners or organic amendments to sustain soil health. The fermented juices contained important microbes that can solubilize P and K in soil for crop use. The high pH and C content of the biochar and compost and the high cation exchange capacity of the biochar are good indicators of the potential of these materials to sustain soil health in terms of the liming effect of acid soils, nutrient and water retention, nutrient reserves, and a suitable habitat for microbial life. Moreover, the organic amendments contain reasonable amounts of macro- and micro-nutrients, which could be released to increase soil fertility. Despite these potential benefits, field application of these organic amendments is necessary to evaluate their effects on soil health and crop production in both the short and long term.


Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Olga Donets

The use of unsustainable levels of chemical fertilizers and plant protection chemicals has resulted in a steady decline in soil and crop productivity the world over. Soil biology has undergone irreversible damage, coupled with a high concentration of toxic chemical residues in plant tissues and human bodies. Agricultural practices must evolve to sustainably meet the growing global demand for food without irreversibly damaging soil. Microbial biocontrol agents have tremendous potential to bring sustainability to agriculture in a way that is safe for the environment. Biopesticides do not kill non-target insects, and biosafety is ensured because biopesticides act as antidotes and do not lead to chemical contamination in the soil. This article is part of a larger study conducted in Ukraine by researchers at the Université de Montréal with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers who use biofertilizers (“user farmers”) and those who do not (“non-user farmers”), along with the responses of manufacturers or suppliers of biofertilizers, and research and development (R&D) scientists are captured to demonstrate the advantages of applying microbial biopesticides to field crops. Participants reported a 15-30% increase in yields and crop production after the application of biopesticides. With the use of biopesticides, farmers cultivated better quality fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of crop loss remains high (60-70%) with chemically grown crops, this risk is reduced to 33% on average if crops are grown using biopesticides. The findings indicate that a large proportion of farmers would prefer to use biopesticides if they are effective and high quality products. In this context, the quality and effectiveness of products is therefore very important. Despite their benefits to soil, human health, and ecosystems, biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. Therefore, the development of biopesticides must overcome the problems of poor quality products, short shelf life, delayed action, high market costs, and legal/registration issues.


Author(s):  
Dhiman Mukherjee

In the emerging global economic order in which agricultural crop production is witnessing a rapid transition to agricultural commodity production, potato is appearing as an important crop, poised to sustain and diversify food production in this new millennium. Temperature and unpredictable drought are two most important factor affecting world food securities and the catalyst of the great famines of the past. Decreased precipitation could cause reduction of irrigation water availability and increase in evapo-transpiration, leading to severe crop water-stress conditions. Increasing crop productivity in unfavourable environments will require advanced technologies to complement traditional methods which are often unable to prevent yield losses due to environmental stresses. Various crop management practices such as improved nutrient application rate, mulching, raised beds and other improved technology help to raise the productivity. Conservation farming practices play important role to restore soil and enhancing soil health and play important role to combat climate change issue.


Our Nature ◽  
1970 ◽  
Vol 8 (1) ◽  
pp. 270-312 ◽  
Author(s):  
C. Inskipp ◽  
H.S. Baral

This paper is a review of the potential impacts of agriculture on Nepal birds. It includes an overview of agriculture in Nepal and the changes that have taken place between the early 1950s and 2007. Agricultural development has been sluggish, and has failed to keep pace with population growth. In recent years the yields of major food crops in Nepal have been lower than other South Asian countries and Nepal is now dependent on food imports. Land holding size per family and field sizes have both decreased markedly during the period. If hill regions are considered independently, all cereal crops yields have stagnated in the last 30 years and gains in production that have been made, have been due to increases in area of cultivation, at the expense of natural habitats: forests, wetlands and grasslands. Crop productivity in the hills has declined due to land degradation. Of the 28% of Nepal land that is degraded, 10% is poorly managed sloping agriculture terraces. As yields and production of cereal crops have fallen, many farmers have shifted to growing cash crops, to meet the demands of the increasing urban population and encouraged by government agricultural policies. Cultivation area, production and yields of some cash crops have significantly increased since 1964/65. Nepal’s livestock population is one of the highest in Asia and nearly every rural household keeps domestic animals resulting in widespread and serious problems of livestock overgrazing. The importance of agricultural habitats for Nepal birds is reviewed: 21% of bird species recorded in Nepal utilizes agricultural habitats for foraging at some season. The many ecological benefits of birds to agriculture and the damage caused by birds to agriculture are described: the former far outweigh the latter. Changes in agricultural practices (including changes in crops and crop production, impacts of livestock overgrazing) are having major and far-reaching impacts on natural habitats - grasslands wetlands and forests and their bird species; these changes and impacts are detailed and analysed. The increasing use of pesticides in Nepal, which is especially high on vegetable cash crops, the serious impacts of pesticides on birds and the environment and alternatives to pesticides are reviewed. Fertilizer use in Nepal and the damaging impacts of fertilizer over-use on birds and the environment are also reviewed. Recommendations to improve farming methods for the benefit of the environment are given. These include government measures to promote organic agriculture; government measures to expand the System of Rice Intensification and to encourage further use of Effective Microorganisms, both of which have significant benefits for environment, birds and farmers; field surveys to monitor bird populations and bird distribution on agricultural lands, and outreach and awareness-raising for farmers to apply best practice for sustainable environmentally friendly farming.DOI: 10.3126/on.v8i1.4339


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1349
Author(s):  
John Havlin ◽  
Ron Heiniger

Increasing crop productivity per unit of land area to meet future food and fiber demand increases both soil nutrient removal and the importance of replenishing soil fertility through efficient nutrient management practices. Significant progress in enhancing nutrient-use efficiency in production agriculture requires improved estimates of plant-available nutrients in the root zone, enhanced crop response to applied nutrients, and reduced offsite nutrient transport. This special issue, Soil Fertility Management for Better Crop Production, presents 15 manuscripts that advance our knowledge of interrelated soil, plant, and management factors important to increasing the nutrient availability and crop recovery of applied nutrients.


2016 ◽  
Vol 155 (4) ◽  
pp. 527-543 ◽  
Author(s):  
G. R. DIXON

SUMMARYCalcium cyanamide is a nitrogenous fertilizer used predominantly for over a century in field and glasshouse vegetable and salad production. The current review draws together, for the first time, knowledge concerning the biological properties of the compound that benefit crop production by encouraging sustainable soil health and quality. This is achieved through the increase of microorganisms antagonistic to plant pathogens. The review also reports on the natural occurence and degradation of cyanamide. The literature survey provides a perspective of research from the early 1900s to current studies. This identifies that nitrogen is released steadily into the rhizosphere from this fertilizer. Calcium is also readily available for plant roots and promotes the alkaline soil conditions beneficial to benign microorganisms. Consequently, soil suppressiveness towards organisms such asPlasmodiophora brassicae, the cause of clubroot disease in brassicas, develops. The effects of calcium and accompanying changes in soil pH values are discussed in relation to the life-cycle stages ofP. brassicaeand the development of clubroot disease. Formulations of calcium cyanamide contain the dimeric form, dicyandiamide. This compound slows soil nitrification and subsequent nitrate leaching into ground waters, reducing potential pollution. Calcium cyanamide is normally used for growing specialized fresh produce and is not available in quantities comparable with ammoniacal fertilizers. It is contended, however, that it has properties deserving wider assessment because of their implications for sustainable cropping.


Sign in / Sign up

Export Citation Format

Share Document