scholarly journals Volatile constituents of essential oils isolated from leaf and inflorescences of Piper longum Linn.

Author(s):  
Md Nazrul Islam Bhuiyan ◽  
Jaripa Begum ◽  
MN Anwar

Essential oil compositions of the inflorescences and leaf of Piper longum Linn. were investigated by gas chromatography–mass spectrometry (GC-MS). P. longum oils were found to contain few monoterpene hydrocarbons, a moderate content of sesquiterpenes and high content of aliphatic hydrocarbons. The inflorescences oil rich in eugenol (33.11%), caryophyllene (9.29%), cinnamyl acetate (5.91%) and b-pinene (4.74%), whereas leaf oil rich in trans-nerolidol (19.08%), caryophyllene (12.25%), 3-heptene, 7-phenyl- (3.71%), benzyl benzoate (3.68%), caryophyllene oxide (3.62%) and ?-elemene (3.28%). The compositions of both oils varied qualitatively and quantitatively. DOI: http://dx.doi.org/10.3329/cujbs.v3i1.13408 The Chittagong Univ. J. B. Sci.,Vol. 3(1&2):77-85, 2008

2012 ◽  
Vol 7 (12) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Isiaka A. Ogunwande ◽  
Razaq Jimoh ◽  
Adedoyin A. Ajetunmobi ◽  
Nudewhenu O. Avoseh ◽  
Guido Flamini

Essential oils obtained by hydrodistillation of leaves of two Nigerian species were analyzed for their constituents by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The leaf oil of Ficus benjamina L. (Moraceae), collected during the day, contained high contents of α-pinene (13.9%), abietadiene (9.7%), cis-α-bisabolene (8.2%) and germacrene-D-4-ol (8.4%), while the night sample was dominated by germacrene-D-4-ol (31.5%), 1,10-di- epi-cubenol (8.8%) and hexahydrofarnesylacetone (8.3%). This could be a possible indication of differences in emissions of volatiles by F. benjamina during the day and night. The main compounds of Irvingia barteri Hook. f. (Irvingiaceae) were β-caryophyllene (17.0%), (E)-α-ionone (10.0%), geranial (7.6%), (E)-β-ionone (6.6%) and β-gurjunene (5.1%).


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Oladipupo A. Lawal ◽  
Isiaka A. Ogunwande ◽  
Andy R. Opoku

This paper reports on the compounds identified in the leaf and flower essential oils obtained by hydrodistillation of Plumeria alba L. (Apocynaceae) grown in Nigeria. The chemical analysis of the essential oils was achieved by means of gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS). Linalool (13.2%), n-nonanal (9.6%), phenyl acetaldehyde (8.5%), neryl acetone (5.3%) and n-decanal (5.1%) were the main constituents of the leaf oil. On the other hand, the flower oil comprised mainly of limonene (9.1%), linalool (7.9%), α-cedrene (8.0%), caryophyllene oxide (7.9%) and ( E, E)-α-farnesene (6.6%). This is the first report on the essential oil constituents of P. alba.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Thilahgavani Nagappan ◽  
Perumal Ramasamy ◽  
Charles Santhanaraju Vairappan

The composition of the essential oils of Murraya koenigii(L.) Spreng, cultivated at six locations in Peninsula Malaysia and Borneo are presented. The oils were obtained from fresh leaves by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS); 61 compounds were identified, of which eleven were present in all the specimens analyzed. The two major volatile metabolites were identified as β-caryophyllene (16.6-26.6%) and α-humulene (15.2-26.7%) along with nine minor compounds identified as β-elemene (0.3-1.3%), aromadendrene (0.5-1.5%), β-selinene (3.8-6.5%), spathulenol (0.6-2.7%), caryophyllene oxide (0.7-3.6%), viridiflorol (1.5-5.5%), 2-naphthalenemethanol (0.7-4.8%), trivertal (0.1-1.0%) and juniper camphor (2.6-8.3%). The results suggest that β-caryophyllene and α-humulene could be used as chemotaxonomical markers for Malaysian M. koenigii, hence these specimens could be of the same stock and different from the ones in India, Thailand and China.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900
Author(s):  
Rajesh K. Joshi

The essential oil obtained from the aerial parts of Croton bonplandianus Baill. was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 37 compounds have been identified, representing 96.2% of the total oil. The main constituents were identified as β-caryophyllene (16.7%), germacrene D (14.7%), borneol (8.3%), Z-β-damascenone (6.(%), isobornyl acetate (6.2%), α-humulene (6.1%), germacrene A (5.2%) and caryophyllene oxide (4.5%). The oil was rich in sesquiterpene hydrocarbons (60.1%).


2009 ◽  
Vol 4 (11) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Amy Desautels ◽  
Kamal Biswas ◽  
Alexander Lane ◽  
Astrid Boeckelmann ◽  
Soheil S. Mahmoud

Linalool acetate, one of the major constituent of several essential oils, is heat-labile and decomposes upon exposure to the high injector temperature during gas chromatography. Here we report the development of an improved method for detection of this compound by gas chromatography mass spectrometry (GCMS) using cold on-column injection of the sample. By using this sensitive method, it has been demonstrated that a lavandin (L.x intermedia) mutant accumulates trace quantities of linalool acetate and camphor and higher amounts of cineole and borneol compared to its parent. This plant, which very likely carries a point mutation in one or more of the genes involved in essential oil production, provides a unique tool for investigating regulation of essential oil biogenesis in plants.


2011 ◽  
Vol 76 (4) ◽  
pp. 523-528 ◽  
Author(s):  
Ram Verma ◽  
Rajendra Padalia ◽  
Chandan Chanotiya ◽  
Amit Chauhan ◽  
Anju Yadav

Hydrodistilled essential oil of the aerial parts of Laggera crispata (Vahl) Hepper & Wood, collected from the Kumaon region of the western Himalayas was analysed by gas chromatography and gas chromatography-Mass Spectrometry. Eighty constituents, accounting for 83.9 % of the total oil composition, were identified. The oil was mainly dominated by sesquiterpenoids (45.3 %) and benzenoid compounds (33.9 %). Among them, 2,5-dimethoxy-p-cymene (32.2 %), 10-epi-?-eudesmol (14.7 %), ?-caryophyllene (6.9 %), and caryophyllene oxide (5.4 %) were major components of the oil.


2010 ◽  
Vol 5 (8) ◽  
pp. 1934578X1000500
Author(s):  
Yuan Zhang ◽  
Zhezhi Wang

Gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS) were used to compare between the essential oil components from needles of Pinus armandii Franch versus P. tabulaeformis Carr., growing on the same site at Taibai Mountain, China. Under optimum extraction and analysis conditions, 65 and 66 constituents each were identified in P. armandii and P. tabulaeformis, which accounted for 87.9% and 87.1%, respectively, of their oils. Based on their terpene compositions, we concluded that these species belong to a high-caryophyllene chemotype, with sesquiterpenes comprising 54.4% to 54.8% of the total contents. We also determined minor qualitative and major quantitative variations in some compounds. Compared with that from P. tabulaeformis, P. armandii oil had more γ-muurolene (7.5%), terpinolene (5.8%), and longifolene (5.7%). In contrast, α-pinene (8.6%) and caryophyllene oxide (7.4%) were the dominant compounds in P. tabulaeformis.


2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800
Author(s):  
Rajesh K. Joshi

The essential oil composition from the aerial parts of Baccharoides lilacina (Dalzell & A. Gibson) M. R. Almeida was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 41 compounds have been identified, representing 97.4% of the total oil. The main constituents were identified as β-caryophyllene (27.7%), epi-α-cadinol (25.1%), caryophyllene oxide (9.9%), α-muurolol (7.6%), α-cadinene (6.1%) and α-cadinol 4.5%). The oil was found to be rich in oxygenated sesquiterpenes (47.1%) and sesquiterpene hydrocarbons (46.2%).


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Deribachew Bekana ◽  
Tesfahun Kebede ◽  
Mulugeta Assefa ◽  
Habtemariam Kassa

Oleogum resins of B. papyrifera, B. neglecta, and B. rivae were collected from northwestern, southern, and southeastern Ethiopia, and their respective methanol extracts and essential oils were extracted and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The investigation on essential oils led to the identification of 6, 7, and 8 constituents for B. papyrifera, B. neglecta, and B. rivae, respectively. The essential oil of B. papyrifera is mainly characterized by the presence of octyl acetate (57.1–65.7%) and n-octanol (3.4–8.8%). B. neglecta is rich in α-pinene (32.6–50.7%) followed by terpinen-4-ol (17.5–29.9%) and α-thujene (12.7–16.5%), whereas B. rivae was predominated by α-pinene (32.5–66.2%) followed by p-cymene (5.7–21.1%) and limonene (1.1–19.6%). Methanol extracts of the three Boswellia species were found to consist of diterpines (incensole, incensyl acetate and verticilla-4(20),7,11-triene), triterpenes (β-amyrin, α-amyrin, β-amyrenone, and α-amyrenone), nortriterpenes (24-noroleana-3,12-diene and 24-norursa-3,12-diene), and α-boswellic acid. The investigation on the methanol extract showed that only B. papyrifera contains diterpenes and nortriterpenes, whereas B. rivae and B. neglecta consist of only triterpenes. The results indicate that the three Boswellia species were characterized by some terpenes and these terpenoic constituents could be recognized as chemotaxonomical markers for each species.


2018 ◽  
Vol 1 (1) ◽  
pp. 1120-1125
Author(s):  
Mustafa Abdullah Yilmaz

The goal of this study was to investigate the essential oil compositions of different parts (stem, leaf, flower and mixture) of Lavandula x intermedia in Bismil-Diyarbakır,Turkey. The chemical composition of essential oils obtained by hydrodistillation from fresh Lavandin samples were analyzed using gas chromatography-mass spectrometry (GC/MS). The results indicate the major components of the studied parts of lavandin was; linalool (24.97-2.52-43.86-39.43 %), linalyl acetate (3.,4-0.29-9.37-15.76 %), eucalyptol (33.81-43.81-18.47-12.08 %), camphor (13.12-15.91-8.72-9.21 %), endo-borneol (2.03-5.18-0.68-1.24 %) and alpha-terpineol (2.84-2.47-1.28-3.86 %) in essential oils of stem, leaf, flower and mixture parts of fresh lavandin respectively. It was understood that linalool and linalyl acetate level were the highest in flower and mix parts while eucalyptol, camphor and endo-borneol levels were the highest in stem and leaf parts of the plant.


Sign in / Sign up

Export Citation Format

Share Document