scholarly journals Diagnosis of Galactosemia by Simple Technique in a Resource-Constraint Country

2020 ◽  
Vol 10 (1) ◽  
pp. 43-48
Author(s):  
Md Benzamin ◽  
Nazmul Hassan ◽  
Rono Mollika ◽  
Kaniz Fathema ◽  
Khan Lamia Nahid ◽  
...  

Galactosemia is an autosomal recessive inheritance and there is cellular deficiency of enzymes leading to defective/impaired metabolism of galactose resulting in toxic byproducts like galactilol, galactose-1-phosphate and galactonate that affect mainly liver, brain, kidneys, lens and gonads. Galactosemia appears as a rare metabolic cause of neonatal cholestasis syndrome (NCS). The classic disease manifestation after the first milk feeding varies in severity from an acute fulminant illness to a more common subacute illness beginning within the first few days of life. Neonatal sepsis is one of the presentations. Galactokinase deficiency results primarily in cataract formation and galactosuria. The preliminary diagnosis of galactosemia in sick neonates and suspected infants is made by Benedict test in several urine specimens and followed by dipstick test to exclude glycosuria. Gold standard test is demonstration of low enzyme activity in erythrocyte. Galactosemia can be detected by newborn screening methods like the Guthrie test using filterpaper blood samples. Classical form of galactosemia should be treated with an absolute galactose restricted diet without waiting for confirmation of the diagnosis. Here we report a case of a 50-dayold boy with features of neonatal cholestasis, diagnosed as galactosemia by using a simple cost effective method. J Enam Med Col 2020; 10(1): 43-48

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249930
Author(s):  
Aziz Belkadi ◽  
Gaurav Thareja ◽  
Darshana Dadhania ◽  
John R. Lee ◽  
Thangamani Muthukumar ◽  
...  

Kidney transplantation is the treatment of choice for patients with end-stage kidney failure, but transplanted allograft could be affected by viral and bacterial infections and by immune rejection. The standard test for the diagnosis of acute pathologies in kidney transplants is kidney biopsy. However, noninvasive tests would be desirable. Various methods using different techniques have been developed by the transplantation community. But these methods require improvements. We present here a cost-effective method for kidney rejection diagnosis that estimates donor/recipient-specific DNA fraction in recipient urine by sequencing urinary cell DNA. We hypothesized that in the no-pathology stage, the largest tissue types present in recipient urine are donor kidney cells, and in case of rejection, a larger number of recipient immune cells would be observed. Extensive in-silico simulation was used to tune the sequencing parameters: number of variants and depth of coverage. Sequencing of DNA mixture from 2 healthy individuals showed the method is highly predictive (maximum error < 0.04). We then demonstrated the insignificant impact of familial relationship and ethnicity using an in-house and public database. Lastly, we performed deep DNA sequencing of urinary cell pellets from 32 biopsy-matched samples representing two pathology groups: acute rejection (AR, 11 samples) and acute tubular injury (ATI, 12 samples) and 9 samples with no pathology. We found a significant association between the donor/recipient-specific DNA fraction in the two pathology groups compared to no pathology (P = 0.0064 for AR and P = 0.026 for ATI). We conclude that deep DNA sequencing of urinary cells from kidney allograft recipients offers a noninvasive means of diagnosing acute pathologies in the human kidney allograft.


2018 ◽  
Vol 36 ◽  
Author(s):  
G. BRECCIA ◽  
M.B. BISIO ◽  
L. PICARDI ◽  
G. NESTARES

ABSTRACT: The availability of imidazolinone (IMI) resistant cultivars has provided an effective option for weed control in wheat production systems. IMI herbicides control several weeds, including Avena fatua and Lolium multiflorum, which are the most frequent grass weeds in wheat crops of the Argentine Pampas. The aim of this study was to develop a soil-less method that allows rapid phenotyping of IMI resistance in wheat. Nine wheat cultivars differing in IMI resistance were evaluated through a between-paper germination method. Herbicide concentrations required to reduce shoot and root length by 50% for resistant cultivars were > 75 fold that of the susceptible cultivars. The response of resistant and susceptible commercial cultivars was assessed in the between-paper and top-paper methods at 100 mM imazamox as discriminating dose. The Z’-factor was calculated for evaluation of the quality of the screening methods. Both germination methods showed Z’-factors > 0 indicating that the assays were appropriate but the between-paper method allowed to save space in the growth chamber. The germination methods were useful for distinguishing between susceptible and resistant plants carrying at least one resistance gene. The rapid, simple and cost-effective method described in the present study could be a potential tool when selecting for IMI resistance in wheat in breeding programs.


2020 ◽  
Author(s):  
Aziz Belkadi ◽  
Gaurav Thareja ◽  
Darshana Dadhania ◽  
John R. Lee ◽  
Thangamani Muthukumar ◽  
...  

AbstractRenal transplantation is the method of choice for patients with end stage kidney failure. But transplanted allograft could be affected by viral and bacterial infections and immune rejections. The standard test for the diagnosis of acute pathologies in kidney transplants is the renal biopsy. However, noninvasive tests would be desirable. Various methods using different techniques have been developed by the transplantation community. But these methods expect improvements. We present here a cost-effective method based on estimating donor-specific DNA fraction in recipient urine based on sequencing of recipient urine DNA only. We hypothesized that in the no-pathology stage, the largest tissue types present in recipient urine are donor kidney cells and in case of rejection, a larger number of recipient immune cells would be observed. Extensive in-silico simulation was used to tune the sequencing parameters: number of variants and depth of coverage. Sequencing of DNA mixture from 2 healthy individuals showed the method high prediction accuracy (maximum error < 0.04). We then demonstrated the insignificant impact of familial relationship and ethnicity using an in-house and public database. Lastly, we performed recipient deep urine DNA sequencing in 32 samples representing two pathology groups: acute rejection (AR, 12 samples) and acute tubular injury (ATI, 11 samples) and 9 samples with no pathology. We found a significant association between the donor-specific DNA fraction in the two pathology groups compared to no pathology (P = 0.0064 for AR and P = 0.026 for ATI). We conclude that deep DNA sequencing of recipient urine offers a noninvasive means of diagnosing and prognosticating acute pathologies in the human kidney allograft.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


1996 ◽  
Vol 33 (8) ◽  
pp. 23-29 ◽  
Author(s):  
I. Dor ◽  
N. Ben-Yosef

About one hundred and fifty wastewater reservoirs store effluents for irrigation in Israel. Effluent qualities differ according to the inflowing wastewater quality, the degree of pretreatment and the operational parameters. Certain aspects of water quality like concentration of organic matter, suspended solids and chlorophyll are significantly correlated with the water column transparency and colour. Accordingly optical images of the reservoirs obtained from the SPOT satellite demonstrate pronounced differences correlated with the water quality. The analysis of satellite multispectral images is based on a theoretical model. The model calculates, using the radiation transfer equation, the volume reflectance of the water body. Satellite images of 99 reservoirs were analyzed in the chromacity space in order to classify them according to water quality. Principal Component Analysis backed by the theoretical model increases the method sensitivity. Further elaboration of this approach will lead to the establishment of a time and cost effective method for the routine monitoring of these hypertrophic wastewater reservoirs.


2013 ◽  
Vol 10 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Jun Peng ◽  
Yue Feng ◽  
Zhu Tao ◽  
Yingjie Chen ◽  
Xiangnan Hu

2001 ◽  
Vol 47 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Magnus Jonsson ◽  
Joyce Carlson ◽  
Jan-Olof Jeppsson ◽  
Per Simonsson

Abstract Background: Electrophoresis of serum samples allows detection of monoclonal gammopathies indicative of multiple myeloma, Waldenström macroglobulinemia, monoclonal gammopathy of undetermined significance, and amyloidosis. Present methods of high-resolution agarose gel electrophoresis (HRAGE) and immunofixation electrophoresis (IFE) are manual and labor-intensive. Capillary zone electrophoresis (CZE) allows rapid automated protein separation and produces digital absorbance data, appropriate as input for a computerized decision support system. Methods: Using the Beckman Paragon CZE 2000 instrument, we analyzed 711 routine clinical samples, including 95 monoclonal components (MCs) and 9 cases of Bence Jones myeloma, in both the CZE and HRAGE systems. Mathematical algorithms developed for the detection of monoclonal immunoglobulins (MCs) in the γ- and β-regions of the electropherogram were tested on the entire material. Additional algorithms evaluating oligoclonality and polyclonal concentrations of immunoglobulins were also tested. Results: CZE electropherograms corresponded well with HRAGE. Only one IgG MC of 1 g/L, visible on HRAGE, was not visible after CZE. Algorithms detected 94 of 95 MCs (98.9%) and 100% of those visible after CZE. Of 607 samples lacking an MC on HRAGE, only 3 were identified by the algorithms (specificity, 99%). Algorithms evaluating total gammaglobulinemia and oligoclonality also identified several cases of Bence Jones myeloma. Conclusions: The use of capillary electrophoresis provides a modern, rapid, and cost-effective method of analyzing serum proteins. The additional option of computerized decision support, which provides rapid and standardized interpretations, should increase the clinical availability and usefulness of protein analyses in the future.


Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.


Sign in / Sign up

Export Citation Format

Share Document