scholarly journals Dual solutions for radiative MHD forced convective flow of a nanofluid over a slendering stretching sheet in porous medium

2015 ◽  
Vol 12 (2) ◽  
pp. 115-124 ◽  
Author(s):  
C. Sulochana ◽  
N. Sandeep

In this study we analyzed the magnetohydrodynamic forced convective flow of a nanofluid over a slendering stretching sheet in porous medium in presence of thermal radiation and slip effects. We presented dual solutions for no-slip and Navier slip conditions. Using self similarity transformation, the governing partial differential equations are transformed into nonlinear ordinary differential equations and solved numerically using bvp5c Matlab package. The effects of dimensionless governing parameters on velocity and temperature profiles of the flow are discussed with the help of graphs. Numerical computations are carried out and discussed for skin friction coefficient and local Nusselt number. We found an excellent agreement of the present results with the existed results under some special conditions. Results indicate that the dual solutions exist only for certain range of velocity slip parameter. It is also found that the heat transfer performance is high in presence of velocity slip effect.

2020 ◽  
Vol 87 (3-4) ◽  
pp. 261
Author(s):  
Ram Prakash Sharma ◽  
N. Indumathi ◽  
S. Saranya ◽  
B. Ganga ◽  
A. K. Abdul Hakeem

In this study a mathematical analysis has been carried out to scrutinize the unsteady boundary layer flow of an incompressible, rarefied gaseous flow over a vertical stretching sheet with velocity slip and thermal jump boundary conditions in the presence of thermal radiation. Using boundary layer approach and suitable similarity transformations, the governing partial differential equations with the boundary conditions are reduced to a system of non-linear ordinary differential equations. The resulting non-linear ordinary differential equations are solved with the help of fourth order Runge-Kutta method with shooting technique. The results obtained for the velocity profile, temperature profile, skin friction coefficient and the reduced Nusselt number are described through graphs. It is predicted that the velocity and temperature profiles are lower for unsteady flow and has an opposite effect for steady flow.


Author(s):  
Umer Farooq ◽  
Raheela Razzaq ◽  
M. Ijaz Khan ◽  
Yu-Ming Chu ◽  
Dian Chen Lu

The objective of this paper is to study the mixed convective nonsimilar flow above an exponentially stretching sheet saturated by nanofluid. The leading partial differential equations (PDEs) of the problem have been modified towards dimensionless nonlinear PDEs utilizing newly proposed nonsimilarity transformations. Furthermore, local nonsimilarity procedure up to-second truncation has been operated to change the dimensionless PDEs into ordinary differential equations (ODEs). MATLAB-based algorithm bvp4c is used to observe the consequences of the distinct parameters namely Prandlt number [Formula: see text], magnetic field [Formula: see text], Lewis number [Formula: see text], Brownian motion [Formula: see text], Eckert number [Formula: see text], thermophoresis [Formula: see text] on velocity, concentration and temperature distribution are shown in graphical portray. Additional outcomes presume the heat penetration into the fluid enhances with increase in Biot number and Brownian motion. Increasing values of [Formula: see text] and [Formula: see text] cause decrease of temperature profile.


Author(s):  
Isaac Ogechi Senge ◽  
Emmanuel Olubayo Oghre ◽  
Idongesit Fred Ekang

The influence of radiation on magneto-hydrodynamics (MHD) boundary layer flow over an exponentially stretching sheet embedded in a thermally stratified porous medium in the presence of heat source and suction/blowing was investigated. Similarity transformation was used to convert the governing equations from partial differential equations into a system of non-linear ordinary differential equations. Solving numerically, we used shooting method along with fourth order Runge-Kutta technique to obtained numerical values. The effects of the obtained numerical values of the dimensionless parameters on skin-friction coefficient, Nusselt number, velocity profile and temperature profile are illustrated in table and graphs plotted using MATLAB. Comparison of the velocity profile with previously published work was presented and found to be in good agreement.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2021 ◽  
Vol 12 (1) ◽  
pp. 132-148

Analytical study of the free and forced convective flow of Casson fluid in the existence of viscous dissipation, ohmic effect and uniform magnetic field in a porous channel to the physical model. The nonlinear coupled partial differential equations are converted to linear partial differential equations using similarity transformation and the classical perturbation method. The physical parameters such as Prandtl number (Pr), viscous dissipation (Vi), Schmidt number (Sc), Reynolds number (R), thermal buoyancy parameter (λ), Ohmic number (Oh), Casson fluid parameter (β), Darcy number (Da), Hartmann number (M2), the concentration of buoyancy parameter (N), chemical reaction rate (γ) effect on velocity, temperature and concentration have been studied with pictorial representation. For the particular case, the present paper analysis is compared with the previous work and is found good agreement.


2016 ◽  
Vol 9 ◽  
pp. 47-65 ◽  
Author(s):  
Kolawole Sunday Adegbie ◽  
Adeyemi Isaiah Fagbade

The present paper addresses the problem of MHD forced convective flow in a fluid saturated porous medium with Brinkman-Forchheimer model, which is an important physical phenomena in engineering applications. The paper extends the previous models to account for effects of variable fluid properties on the forced convective flow through a porous medium in the presence of radiative heat loss using bivariate spectral relaxation method (BSRM). The dynamic viscosity and thermal conductivity of the newtonian fluid are assumed to vary linearly respectively, with temperature whereas the contribution of thermal radiative heat loss is based on Rosseland diffussion approximation. The flow model is described and expressed in form of a highly coupled nonlinear system of partial differential equations. The method of solution BSRM as proposed by Motsa [25] seeks to decouple the original system of PDEs to form a sequence of equations that can be solved in a computationally efficient manner. BSRM is an approach that applies spectral collocation independently in all underlying independent variable is executed to obtain approximate solutions of the problem. The proposed algorithm is supposed to be a very accurate, convergent and very effective in generating numerical results. The results obtained show a significant effects of the flow control parameters on the fluid velocity and temperature respectively. Consequently, the wall shear stress and local heat transfer rate of the present paper are compared with the available results in literatures. Remarkable impacts and a good agreement are found.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1087 ◽  
Author(s):  
Anum Shafiq ◽  
Islam Zari ◽  
Ghulam Rasool ◽  
Iskander Tlili ◽  
Tahir Saeed Khan

The proposed investigation concerns the impact of inclined magnetohydrodynamics (MHD) in a Casson axisymmetric Marangoni forced convective flow of nanofluids. Axisymmetric Marangoni convective flow has been driven by concentration and temperature gradients due to an infinite disk. Brownian motion appears due to concentration of the nanosize metallic particles in a typical base fluid. Thermophoretic attribute and heat source are considered. The analysis of flow pattern is perceived in the presence of certain distinct fluid parameters. Using appropriate transformations, the system of Partial Differential Equations (PDEs) is reduced into non-linear Ordinary Differential Equations (ODEs). Numerical solution of this problem is achieved invoking Runge–Kutta fourth-order algorithm. To observe the effect of inclined MHD in axisymmetric Marangoni convective flow, some suitable boundary conditions are incorporated. To figure out the impact of heat/mass phenomena on flow behavior, different physical and flow parameters are addressed for velocity, concentration and temperature profiles with the aid of tables and graphs. The results indicate that Casson fluid parameter and angle of inclination of MHD are reducing factors for fluid movement; however, stronger Marangoni effect is sufficient to improve the velocity profile.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Maria Imtiaz ◽  
Hira Nazar ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Abstract The focus of this paper is to study the effects of stagnation point flow and porous medium on ferrofluid flow over a variable thicked sheet. Heat transfer analysis is discussed by including thermal radiation. Suitable transformations are applied to convert partial differential equations to ordinary differential equations. Convergent results for series solutions are calculated. The impact of numerous parameters on velocity and temperature is displayed for series solutions. Graphical behavior for skin friction coefficient and Nusselt number is also analyzed. Numerical values of Nusselt number are tabulated depending upon various parameters


2019 ◽  
Vol 35 (5) ◽  
pp. 705-717
Author(s):  
S. Ghosh ◽  
S. Mukhopadhyay ◽  
K. Vajravelu

ABSTRACTThe problem of unsteady boundary layer flow of a nanofluid over a stretching surface is studied. Heat transfer due to melting is analyzed. Using a similarity transformation the governing coupled nonlinear partial differential equations of the model are reduced to a system of nonlinear ordinary differential equations, and then solved numerically by a Runge-Kutta method with a shooting technique. Dual solutions are observed numerically and their characteristics are analyzed. The effects of the pertinent parameters such as the acceleration parameter, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number and the Lewis number on the velocity, temperature and concentration fields are discussed. Also the effects of these parameters on the skin friction coefficient, the Nusselt number and the Sherwood number are analyzed through graphs. It is observed that the melting phenomenon has a significant effect on the flow, heat and mass transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document