scholarly journals Prediction of Corrosion Inhibitor Efficiency of Some Aromatic Hydrazides and Schiff Bases Compounds by Using Artificial Neural Network

2009 ◽  
Vol 2 (1) ◽  
pp. 108-113
Author(s):  
Hanan A. Al-Hazam

Artificial neural networks are used for evaluating the corrosion inhibitor efficiency of some aromatic hydrazides and Schiff bases compounds. The nodes of neural network input layer represent the quantum parameters, total negative charge (TNC) on molecule, energy of highest occupied molecular orbital (E Homo), energy of lowest unoccupied molecular orbital (E Lomo), dipole moment (μ), total energy (TE), molecular volume (V), dipolar-polarizability factor (Π) and inhibitor  concentration (C). The neural network output is the corrosion inhibitor efficiency (E) for the mentioned compounds. The training and testing of the developed network are based on a database of 31 published experimental tests obtained by weight loss. The neural network predictions for corrosion inhibitor efficiency are more reliable than prediction using other conventional theoretical methods such as AM1, PM3, Mindo, and Mindo-3. Key words: Neural network; Corrosion inhibitor efficiency. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reservedDOI: 10.3329/jsr.v2i1.2757                 J. Sci. Res. 2 (1), 108-113  (2010) 

1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


2014 ◽  
Vol 38 (6) ◽  
pp. 1681-1693 ◽  
Author(s):  
Braz Calderano Filho ◽  
Helena Polivanov ◽  
César da Silva Chagas ◽  
Waldir de Carvalho Júnior ◽  
Emílio Velloso Barroso ◽  
...  

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


Author(s):  
Jason K. Ostanek

In much of the public literature on pin-fin heat transfer, Nusselt number is presented as a function of Reynolds number using a power-law correlation. Power-law correlations typically have an accuracy of 20% while the experimental uncertainty of such measurements is typically between 5% and 10%. Additionally, the use of power-law correlations may require many sets of empirical constants to fully characterize heat transfer for different geometrical arrangements. In the present work, artificial neural networks were used to predict heat transfer as a function of streamwise spacing, spanwise spacing, pin-fin height, Reynolds number, and row position. When predicting experimental heat transfer data, the neural network was able to predict 73% of array-averaged heat transfer data to within 10% accuracy while published power-law correlations predicted 48% of the data to within 10% accuracy. Similarly, the neural network predicted 81% of row-averaged data to within 10% accuracy while 52% of the data was predicted to within 10% accuracy using power-law correlations. The present work shows that first-order heat transfer predictions may be simplified by using a single neural network model rather than combining or interpolating between power-law correlations. Furthermore, the neural network may be expanded to include additional pin-fin features of interest such as fillets, duct rotation, pin shape, pin inclination angle, and more making neural networks expandable and adaptable models for predicting pin-fin heat transfer.


2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


2020 ◽  
Vol 3 (1) ◽  
pp. 491-500
Author(s):  
Matin Ghaziani ◽  
Erhan İlhan Konukseven ◽  
Ahmet Buğra Koku

Road detection from the satellite images can be considered as a classification process in which pixels are divided into the road and non-road classes. In this research, an automatic road extraction using an artificial neural network (ANN) based on automatic information extraction from satellite images and self-adjusting of the hidden layer proposed. Parameters of non-urban road networks from satellite images using a histogram-based binary image segmentation technique are also presented. The segmentation method is implemented by determining a global threshold, which is obtained from a statistical analysis of a number of sample satellite images and their ground truths. The thresholding method is based on two major facts: first, the points corresponding to non-asphalt roads are brighter than other areas in non-urban images. Second, it is observed that in an aerial image, the area covered by roads is only a small fraction of total pixels. It is also observed that pixels corresponding to roads are generally populated at the very bright end of the image greyscale histogram. In this method, at first, the possible road pixels are selected by the proposed segmentation method. Then different parameters, including color, gradient, and entropy, are computed for each pixel from the source image. Finally, these features are used for the artificial neural network input. The results show that the accuracy of the proposed road extraction method is around 80%.


Author(s):  
С.Н. Полулях ◽  
А.И. Горбованов

The possibility of artificial neural network application to detect nuclear spin echo signals under conditions when the echo amplitude is comparable to the amplitude of the noise is demonstrated. Data obtained by superimposing the model echo signals of a Gaussian form on experimentally recorded noise signals is proposed to use for training the neural network.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Wang ◽  
Bailing Wang ◽  
Yunxiao Sun ◽  
Yuliang Wei ◽  
Kai Wang ◽  
...  

The security of industrial control systems (ICSs) has received a lot of attention in recent years. ICSs were once closed networks. But with the development of IT technologies, ICSs have become connected to the Internet, increasing the potential of cyberattacks. Because ICSs are so tightly linked to human lives, any harm to them could have disastrous implications. As a technique of providing protection, many intrusion detection system (IDS) studies have been conducted. However, because of the complicated network environment and rising means of attack, it is difficult to cover all attack classes, most of the existing classification techniques are hard to deploy in a real environment since they cannot deal with the open set problem. We propose a novel artificial neural network based-methodology to solve this problem. Our suggested method can classify known classes while also detecting unknown classes. We conduct research from two points of view. On the one hand, we use the openmax layer instead of the traditional softmax layer. Openmax overcomes the limitations of softmax, allowing neural networks to detect unknown attack classes. During training, on the other hand, a new loss function termed center loss is implemented to improve detection ability. The neural network model learns better feature representations with the combined supervision of center loss and softmax loss. We evaluate the neural network on NF-BoT-IoT-v2 and Gas Pipeline datasets. The experiments show our proposed method is comparable with the state-of-the-art algorithm in terms of detecting unknown classes. But our method has a better overall classification performance.


Sign in / Sign up

Export Citation Format

Share Document