neural network input
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Azadeh Akbari Sene ◽  
Zahra Zandieh ◽  
Mojgan Soflaei ◽  
Hamid Mokhtari Torshizi ◽  
Kourosh Sheibani

Abstract Background To evaluate the use of artificial intelligence (AI) in predicting the success rate of intrauterine insemination (IUI) treatment among infertile couples and also to determine the importance of each of the parameters affecting IUI success. This study was a retrospective cohort study in which information from 380 infertile couples undergoing IUI treatment (190 cases resulting in positive pregnancy test and 190 cases of failed IUI) including underlying factors, female factors, sperm parameters at the beginning of the treatment cycle, and fertility results were collected from 2013 to 2019 and evaluated to determine the effectiveness of AI in predicting IUI success. Results We used the most important factors influencing the success of IUI as a neural network input. With the help of a three-layer neural network, the accuracy of the AI to predict the success rate of IUI was 71.92% and the sensitivity and specificity were 76.19% and 66.67%, respectively. The effect of each of the predictive factors was obtained by calculating the ROC curve and determining the cut-off point. Conclusions The morphology, total motility, and progressive motility of the sperm were found to be the most important predictive factors for IUI success. In this study, we concluded that by predicting IUI success rate, artificial intelligence can help clinicians choose individualized treatment for infertile couples and to shorten the time to pregnancy.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1227
Author(s):  
Abdulrahman Basahel ◽  
Mohammad Amir Sattari ◽  
Osman Taylan ◽  
Ehsan Nazemi

The increasing consumption of fossil fuel resources in the world has placed emphasis on flow measurements in the oil industry. This has generated a growing niche in the flowmeter industry. In this regard, in this study, an artificial neural network (ANN) and various feature extractions have been utilized to enhance the precision of X-ray radiation-based two-phase flowmeters. The detection system proposed in this article comprises an X-ray tube, a NaI detector to record the photons, and a Pyrex-glass pipe, which is placed between detector and source. To model the mentioned geometry, the Monte Carlo MCNP-X code was utilized. Five features in the time domain were derived from the collected data to be used as the neural network input. Multi-Layer Perceptron (MLP) was applied to approximate the function related to the input-output relationship. Finally, the introduced approach was able to correctly recognize the flow pattern and predict the volume fraction of two-phase flow’s components with root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of less than 0.51, 0.4 and 1.16%, respectively. The obtained precision of the proposed system in this study is better than those reported in previous works.


2021 ◽  
Vol 11 (1) ◽  
pp. 480-490
Author(s):  
Asha Gnana Priya Henry ◽  
Anitha Jude

Abstract Retinal image analysis is one of the important diagnosis methods in modern ophthalmology because eye information is present in the retina. The image acquisition process may have some effects and can affect the quality of the image. This can be improved by better image enhancement techniques combined with the computer-aided diagnosis system. Deep learning is one of the important computational application techniques used for a medical imaging application. The main aim of this article is to find the best enhancement techniques for the identification of diabetic retinopathy (DR) and are tested with the commonly used deep learning techniques, and the performances are measured. In this article, the input image is taken from the Indian-based database named as Indian Diabetic Retinopathy Image Dataset, and 13 filters are used including smoothing and sharpening filters for enhancing the images. Then, the quality of the enhancement techniques is compared using performance metrics and better results are obtained for Median, Gaussian, Bilateral, Wiener, and partial differential equation filters and are combined for improving the enhancement of images. The output images from all the enhanced filters are given as the convolutional neural network input and the results are compared to find the better enhancement method.


2021 ◽  
Vol 336 ◽  
pp. 01010
Author(s):  
Dazhi Guo ◽  
Qiang Wang ◽  
Fengyan Wu ◽  
Jun Li ◽  
Mo Li ◽  
...  

Aiming at the fault diagnosis of rolling element bearings, propose a method for fine diagnosis of bearings based on wavelet transform and one-dimensional convolutional neural network. First use wavelet transform to decompose the experimental data; Use the resulting low-frequency signal as a one-dimensional convolutional neural network input, bearing fault identification. The experiment uses the deep groove ball bearing of Case Western Reserve University as the research object, Use this method to identify the normal and outer ring faults of the bearing. the result shows: This method can be effectively applied to the precise identification of bearings.


2020 ◽  
Vol 3 (1) ◽  
pp. 491-500
Author(s):  
Matin Ghaziani ◽  
Erhan İlhan Konukseven ◽  
Ahmet Buğra Koku

Road detection from the satellite images can be considered as a classification process in which pixels are divided into the road and non-road classes. In this research, an automatic road extraction using an artificial neural network (ANN) based on automatic information extraction from satellite images and self-adjusting of the hidden layer proposed. Parameters of non-urban road networks from satellite images using a histogram-based binary image segmentation technique are also presented. The segmentation method is implemented by determining a global threshold, which is obtained from a statistical analysis of a number of sample satellite images and their ground truths. The thresholding method is based on two major facts: first, the points corresponding to non-asphalt roads are brighter than other areas in non-urban images. Second, it is observed that in an aerial image, the area covered by roads is only a small fraction of total pixels. It is also observed that pixels corresponding to roads are generally populated at the very bright end of the image greyscale histogram. In this method, at first, the possible road pixels are selected by the proposed segmentation method. Then different parameters, including color, gradient, and entropy, are computed for each pixel from the source image. Finally, these features are used for the artificial neural network input. The results show that the accuracy of the proposed road extraction method is around 80%.


Author(s):  
Xiaonan Tan ◽  
Geng Chen ◽  
Hongyu Sun

Abstract A novel vertical handover algorithm based on multi-attribute and neural network for heterogeneous integrated network is proposed in this paper. The whole frame of the algorithm is constructed by setting the network environment in which we use the network resources by switching between UMTS, GPRS, WLAN, 4G, and 5G. Each network build their own three-layer BP (Back Propagation, BP) neural network model and then the maximum transmission rate, minimum delay, SINR (signal to interference and noise ratio, SINR), bit error rate, user moving speed, and packet loss rate which can affect the overall performance of the wireless network are employed as reference objects to participate in the setting of BP neural network input layer neurons and the training and learning process of subsequent neural network data. Finally, the network download rate is adopted as prediction target to evaluate performance on the five wireless networks and then the vertical handover algorithm will select the right wireless network to perform vertical handover decision. The simulation results on MATLAB platform show that the vertical handover algorithm designed in this paper has a handover success rate up to 90% and realizes efficient handover and seamless connectivity between multi-heterogeneous networks.


2020 ◽  
Vol 13 (6) ◽  
pp. 3447-3470
Author(s):  
Daniel J. Miller ◽  
Michal Segal-Rozenhaimer ◽  
Kirk Knobelspiesse ◽  
Jens Redemann ◽  
Brian Cairns ◽  
...  

Abstract. In this study we developed a neural network (NN) that can be used to retrieve cloud microphysical properties from multiangular and multispectral polarimetric remote sensing observations. This effort builds upon our previous work, which explored the sensitivity of neural network input, architecture, and other design requirements for this type of remote sensing problem. In particular this work introduces a framework for appropriately weighting total and polarized reflectances, which have vastly different magnitudes and measurement uncertainties. The NN is trained using an artificial training set and applied to research scanning polarimeter (RSP) data obtained during the ORACLES field campaign (ObseRvations of Aerosols above CLouds and their intEractionS). The polarimetric RSP observations are unique in that they observe the same cloud from a very large number of angles within a variety of spectral bands, resulting in a large dataset that can be explored rapidly with a NN approach. The usefulness of applying a NN to a dataset such as this one stems from the possibility of rapidly obtaining a retrieval that could be subsequently applied as a first guess for slower but more rigorous physical-based retrieval algorithms. This approach could be particularly advantageous for more complicated atmospheric retrievals – such as when an aerosol layer lies above clouds like in ORACLES. For RSP observations obtained during ORACLES 2016, comparisons between the NN and standard parametric polarimetric (PP) cloud retrieval give reasonable results for droplet effective radius (re: R=0.756, RMSE=1.74 µm) and cloud optical thickness (τ: R=0.950, RMSE=1.82). This level of statistical agreement is shown to be similar to comparisons between the two most well-established cloud retrievals, namely, the polarimetric and the bispectral total reflectance cloud retrievals. The NN retrievals from the ORACLES 2017 dataset result in retrievals of re (R=0.54, RMSE=4.77 µm) and τ (R=0.785, RMSE=5.61) that behave much more poorly. In particular we found that our NN retrieval approach does not perform well for thin (τ<3), inhomogeneous, or broken clouds. We also found that correction for above-cloud atmospheric absorption improved the NN retrievals moderately – but retrievals without this correction still behaved similarly to existing cloud retrievals with a slight systematic offset.


2019 ◽  
Author(s):  
Daniel J. Miller ◽  
Michal Segal-Rozenhaimer ◽  
Kirk Knobelspiesse ◽  
Jens Redemann ◽  
Brian Cairns ◽  
...  

Abstract. In this study we developed a neural network (NN) that can be used to relate a large dataset of multi-angular and multi-spectral polarimetric remote sensing observations to retrievals of cloud microphysical properties. This effort builds upon our previous work, which explored the sensitivity of neural network input, architecture, and other design requirements for this type of remote sensing problem. In particular this work introduces a framework for appropriately weighting total and polarized reflectances, which have vastly different magnitudes and measurement uncertainties. The NN is trained using an artificial training set and applied to Research Scanning Polarimeter (RSP) data obtained during the ORACLES field campaign (Observations of Aerosols above Clouds and their Interactions). The polarimetric RSP observations are unique in that they observe the same cloud from a very large number of angles within a variety of spectral bands resulting in a large dataset that can be explored rapidly with a NN approach. The usefulness applying a NN to a dataset such as this one stems from the possibility of rapidly obtaining a retrieval that could be subsequently applied as a first-guess for slower but more rigorous physical-based retrieval algorithms. This approach could be particularly advantageous for more complicated atmospheric retrievals – such as when an aerosol layer lies above clouds like in ORACLES. For the ORACLES 2016 dataset comparisons of the NN and standard parametric polarimetric (PP) cloud retrieval give reasonable results for droplet effective radius (re : R = 0.756, RMSE = 1.74 μm) and cloud optical thickness (τ : R = 0.950, RMSE = 1.82). This level of statistical agreement is shown to be similar to comparisons between the two most well-established cloud retrievals, namely the the polarimetric cloud retrieval and the bispectral total reflectance cloud retrieval. The NN retrievals from the ORACLES 2017 dataset result in retrievals of re (R = 0.54, RMSE = 4.77 μm) and τ (R = 0.785, RMSE = 5.61) that behave much more poorly. In particular we found that our NN retrieval approach does not perform well for thin (τ  <3), inhomogeneous, or broken clouds. We also found that correction for above-cloud atmospheric absorption improved the NN retrievals moderately – but retrievals without this correction still behaved similarly to existing cloud retrievals with a slight systematic offset.


Sign in / Sign up

Export Citation Format

Share Document