scholarly journals Calculating vehicle intensiveness increase on eid al-fitr day with anfis method

Author(s):  
Rendy Bagus Pratama ◽  
Ema Utami ◽  
Ferry Wahyu Wibowo

the number of motorized vehicles increases every year, especially private vehicles and is not offset by inadequate access until the road becomes more crowded, even traffic jams occur, especially during public holidays and national holidays. for example, during eid holidays there is a density of traffic flow when going back and forth every year, with the development of current technology the density of traffic flows that occur can be calculated so that it will be easier to anticipate in the future. but in this study only will examine the parameter values that cause the vehicle to occur density and accumulation, because it can be developed with parameter values so that the results can be obtained efficiently in solving traffic density. From the results of the anfis method, efficiency is obtained, namely on h-1 and h days of 2014, and 2017 can use Parameters with magins of 6,3% and 4,32%, while 2015 and 2016 can use parameters with margins 1,79% and 0,79%. and for the h + 1 day of 2014, 2016, and 2017, it is more efficient to use parameters with margins 1,4% and only parameters in 2015 which have the efficiency value using parameters with margin -6,17. anfis application in this calculation can be developed in a prediction system.

2019 ◽  
Vol 17 ◽  
Author(s):  
Zakiah Ponrahono ◽  
Noorain Mohd Isa ◽  
Ahmad Zaharin Aris ◽  
Rosta Harun

The inbound and outbound traffic flow characteristic of a campus is an important physical component of overall university setting. The traffic circulation generated may create indirect effects on the environment such as, disturbance to lecturetime when traffic congestion occurs during peak-hours, loss of natural environment and greenery, degradation of the visual environment by improper or illegal parking, air pollution from motorized vehicles either moving or in idle mode due to traffic congestion, noise pollution, energy consumption, land use arrangement and health effects on the community of Universiti Putra Malaysia (UPM) Serdang. A traffic volume and Level of Service (LOS) study is required to facilitate better accessibility and improves the road capacity within the campus area. The purpose of this paper is to highlight the traffic volume and Level of Service of the main access the UPM Serdang campus. A traffic survey was conducted over three (3) weekdays during an active semester to understand the traffic flow pattern. The findings on traffic flow during peak hours are highlighted. The conclusions of on-campus traffic flow patterns are also drawn.


Author(s):  
Anastasiya N. Zhukova ◽  
◽  
Marina S. Shapovalova ◽  

Computerized traffic modeling makes it possible to find out the modification needs to assess the traffic flow on the roads and detect likely problem areas in order to take timely measures to eliminate them. Competent preparation of a road network formation plan based on the acquired information makes it possible to reduce the load on the road transport line, avoid traffic jams, and also reduce the average time spent by drivers on the roads. The macroscopic and microscopic models of the cars flow were analyzed by authors to implement the computer model. The article considered the model of the cellular automata by Nagel–Schreckenberg, with the author’s addition that takes into account the presence of the road sections inaccessible for driving in. The need to modify the lane change algorithm was implemented: the condition of the need to change the lane when car is meeting an inaccessible road section was added. And also the “polite” drivers algorithm for bypassing inaccessible areas with a high density of the traffic flows was proposed. Such a model is realized on Python programming language. An analysis of vehicles behavior with different traffic density and location of inaccessible road sections for two- and three-lane roads was carried out based on that model modification.


Author(s):  
Delina Mshai Mwalimo ◽  
Mary Wainaina ◽  
Winnie Kaluki

This study outlines the Kerner’s 3 phase traffic flow theory, which states that traffic flow occurs in three phases and these are free flow, synchronized flow and wide moving jam phase. A macroscopic traffic model that is factoring road inclination is developed and its features discussed. By construction of the solution to the Rienmann problem, the model is written in conservative form and solved numerically. Using the Lax-Friedrichs method and going ahead to simulate traffic flow on an inclined multi lane road. The dynamics of traffic flow involving cars(fast moving) and trucks(slow moving) on a multi-lane inclined road is studied. Generally, trucks move slower than cars and their speed is significantly reduced when they are moving uphill on an in- clined road, which leads to emergence of a moving bottleneck. If the inclined road is multi-lane then the cars will tend to change lanes with the aim of overtaking the slow moving bottleneck to achieve free flow. The moving bottleneck and lanechange ma- noeuvres affect the dynamics of flow of traffic on the multi-lane road, leading to traffic phase transitions between free flow (F) and synchronised flow(S). Therefore, in order to adequately describe this kind of traffic flow, a model should incorporate the effect of road inclination. This study proposes to account for the road inclination through the fundamental diagram, which relates traffic flow rate to traffic density and ultimately through the anticipation term in the velocity dynamics equation of macroscopic traffic flow model. The features of this model shows how the moving bottleneck and an incline multilane road affects traffic transistions from Free flow(F) to Synchronised flow(S). For a better traffic management and control, proper understanding of traffic congestion is needed. This will help road designers and traffic engineers to verify whether traffic properties and characteristics such as speed(velocity), density and flow among others determines the effectiveness of traffic flow.


Author(s):  
M.G. Boyarshinov ◽  
◽  
A.S. Vavilin ◽  
A.G. Shumkov ◽  
◽  
...  

The relevance of this work is determined by the need to find modern ways to process the information about traffic flows for regulating and controlling the movement of transport and pedestrians, to reduce congestion, road accidents, etc. The object of study is a part of road with heavy two-way traffic, equipped with a software and hardware complex that allows to measure the characteristics of the transport flow. The subject of the study is the daily intensity of the cars flow during the week, from Monday to Sunday. The purpose of this study is to analyze the amplitudes, frequencies, and periods of harmonic functions obtained by decomposing the time series of road traffic intensities to identify the main patterns of traffic flow formation. As a theoretical and methodological approach, the decomposition of the function of the traffic flow intensity in the Fourier series with respect to harmonic functions is used. The approach developed by the authors using the fast Fourier transform procedure made it possible to determine the amplitude-frequency characteristics of the time series under consideration, which is a scientific novelty of the analysis. It is proposed to use the «period-amplitude» characteristics as physically more meaningful instead of the «frequency-amplitude» dependencies traditionally used for the analysis. The processing of data obtained from software and hardware complexes allowed us to determine dependences of the car flow intensity on the road of the Perm city at different averaging intervals, to describe the features of the motor transport movement on the road under consideration. As a result of the study, the amplitude-frequency characteristics of time series are obtained. It is shown that the individual harmonics of the Fourier series expansion of the traffic flow intensity, which exhibits the properties of a random function, duplicate the periodicity of the global, local, and intermediate extremes of the original function and have similar periods. The practical significance consists in the use of the decomposition of the function of the traffic flow intensity in the Fourier series of harmonic functions for predicting traffic flows, controlling the operation of traffic lights, monitoring the operation of equipment, as well as in the reconstruction, design and construction of roads and road objects. The study will continue in the direction of obtaining, processing and determining the «period-amplitude» characteristics for time series of traffic flow intensity for other road networks.


2021 ◽  
Vol 40 (1) ◽  
pp. 1547-1566
Author(s):  
Shuang You ◽  
Yaping Zhou

The traffic flow prediction using cellular automata (CA) is a trendy research domain that identified the potential of CA in modelling the traffic flow. CA is a technique, which utilizes the basic units for describing the overall behaviour of complicated systems. The CA model poses a benefit for defining the characteristics of traffic flow. This paper proposes a modified CA model to reveal the prediction of traffic flows at the signalised intersection. Based on the CA model, the traffic density and the average speed are computed for studying the characteristics and spatial evolution of traffic flow in signalised intersection. Moreover, a CA model with a self-organizing traffic signal system is devised by proposing a new optimization model for controlling the traffic rules. The Sunflower Cat Optimization (SCO) algorithm is employed for efficiently predicting traffic. The SCO is designed by integrating the Sunflower optimization algorithm (SFO) and Cat swarm optimization (CSO) algorithm. Also, the fitness function is devised, which helps to guide the control rules evaluated by traffic simulation using the CA model. Thus, the cellular automaton is optimized using the SCO algorithm for predicting the traffic flows. The proposed Sunflower Cat Optimization-based cellular automata (SCO-CA) outperformed other methods with minimal travel time, distance, average traffic density, and maximal average speed.


Author(s):  
Jelena L. Pisarov ◽  
Gyula Mester

Even the behavior of a single driver can have a dramatic impact on hundreds of cars, making it more difficult to manage traffic. While the attempts to analyze and correct the traffic patterns that lead to congestion began as early in the 1930s, it wasn't until recently that scientists developed simulation techniques and advanced algorithms to create more realistic visualizations of traffic flow. In experiments conducted by Alexandre Bayen and the Liao-Cho, which included several dozen cars in a small-scale closed circuit, a single autonomous vehicle could eliminate traffic jams by moderating the speed of every car on the road. In larger simulations, the research showed that once their number rises to 5-10% of all cars in the traffic, they can manage localized traffic even in complex environments, such as merging multiple lanes of traffic into two or navigating extremely busy sections.


2022 ◽  
pp. 969-1001
Author(s):  
Jelena L. Pisarov ◽  
Gyula Mester

Even the behavior of a single driver can have a dramatic impact on hundreds of cars, making it more difficult to manage traffic. While the attempts to analyze and correct the traffic patterns that lead to congestion began as early in the 1930s, it wasn't until recently that scientists developed simulation techniques and advanced algorithms to create more realistic visualizations of traffic flow. In experiments conducted by Alexandre Bayen and the Liao-Cho, which included several dozen cars in a small-scale closed circuit, a single autonomous vehicle could eliminate traffic jams by moderating the speed of every car on the road. In larger simulations, the research showed that once their number rises to 5-10% of all cars in the traffic, they can manage localized traffic even in complex environments, such as merging multiple lanes of traffic into two or navigating extremely busy sections.


2001 ◽  
Vol 13 (4) ◽  
pp. 419-425
Author(s):  
Hitoshi Tsunashima ◽  
◽  
Yasukazu Nishi ◽  
Takashi Honjyo ◽  
Hiroyuki Kaku ◽  
...  

Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and their drivers' characteristics, which are important factors for any traffic flow analysis, have not been considered sufficiently enough in the past. This paper describes a new concept for simulating complex traffic flows by multiple agents. The agents are considered as a kind of artificial life (A-Life), and their behaviors are independently based on their own knowledge. Drivers, vehicles, roads, and the traffic environment, which are essential elements in our simulation, are defined as the agents. The combination of the driver agent and the vehicle agent work based on the drivers' fields of vision and their unique individual characteristics. The road agent communicates with the vehicle agent in regard to its velocity and position. The effectiveness of our new method for modeling a traffic flow is shown by a simulation study.


2010 ◽  
Vol 2 (6) ◽  
pp. 86-89
Author(s):  
Oksana Musyt ◽  
Oksana Nadtochij ◽  
Aleksandr Stepanchiuk ◽  
Andrej Beljatynskij

An intensive increase in road transport, particularly individual, in recent years has led to such consequences as increased time spent on travel, the number of forced stops, traffic accidents, the occurrence of traffic jams on the road network, reducing traffic speed and a deteriorated urban road network in cities. The most effective method for solving these problems is the use of graph theory, the main characteristics of which is reliability, durability and accessibility of a free as well as loaded network. Based on their analysis the methods for network optimization are proposed.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Kathrin Goldmann ◽  
Gernot Sieg

AbstractIf not restricted by tolls, private decisions to drive on a highway result in inefficiently high usage which leads to traffic jams. When traffic demand is high, traffic jams can occur simply because of the interaction of vehicle drivers on the road, a phenomenon called phantom jam. The probability of phantom jams occurring increases with traffic flow. Unpriced externalities lead to inefficiently high road usage. We offer a method for quantifying traffic jam externalities and identifying and isolating the phantom jam externality. We examine the method by applying it to a specific highway section in Germany. The maximal congestion externality for the analyzed highway section is about 38 cents per vehicle and kilometer. Congestion charges that are calculated ignoring phantom jam externalities, can only internalize two-thirds of the true externality.


Sign in / Sign up

Export Citation Format

Share Document