scholarly journals RP-HPLC method with indirect UV detection for determination of sodium ibandronate in pharmaceuticals

2019 ◽  
Vol 64 (02) ◽  
pp. 43-49
Author(s):  
Zharko Tanturovski ◽  
Zorica Arsova-Sarafinovska ◽  
Aneta Dimitrovska

Ibandronate sodium (IBN) [(1-hydroxy-3- (methyl pentyl amino) propylidene bisphosphonic acid monosodium monohydrate)] is the sodium salt of ibandronic acid, a synthetic nitrogen-containing bisphosphonate drug. The aim of this study was to develop a sensitive and accurate RP-HPLC method with indirect UV detection for determination of IBN in pharmaceutical formulations. Chromatographic separation was performed on a Waters Bridge C18 reversed-phase column (250 x 4.6 mm I.D.; particle size 5 µm), in an isocratic mode with a mobile phase constituted of 90% buffer: 10% acetonitrile (V/V). The buffer was made using 1.5 mL ortho-phosphoric acid, 990 mg 1-Hexanesulfonic acid sodium salt 98%, 140 mg EDTA in 1000 mL flask diluted with HPLC grade water. The elution was carried out at a flow rate of 1.0 mL minˉ1. A diode array detector measured the UV absorbance at 198 nm, in inverse mode. The method was validated for specificity/selectivity, linearity, LOD, LOQ, accuracy, precision and robustness according to ICH validation guidelines. The limits of detection and quantification were calculated at 0.0163 µg/mL and 0.0495 µg/mL, respectively. The method was effectively used for determination of IBN from commercial tablets and provided good results without any interference from commonly used excipients. Keywords: RP-HPLC with indirect UV detection, Ibandronate sodium, validation, pharmaceuticals

INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (02) ◽  
pp. 20-33
Author(s):  
N. S Kumar ◽  
◽  
R Kumaraswamy ◽  
S. Shantikumar ◽  
D. Paul

The present study describes the separation and simultaneous estimation of eight anti-retroviral drugs, namely, Telaprevir (TPV), Emtricitabine (ECB), Fosamprenavir (FANV), Tenofavir (TNF), Ritonavir (RNV), Raltegravir (RGV) and Oseltamivir (OSMV) and Zidovudine (ZDV) as an active pharmaceutical ingredient, by RP-HPLC method by applying the principles of Quality by Design (QbD). An application of DoE (Design of Experiments) full factorial design was used for initial screening and optimization. The final optimized method consists of separation being carried out on a Fortis C18 column (150 mm × 4.6 mm, 5μ particle size) using acetonitrile and 10 mm ammonium formate buffer (pH 3 adjusted with formic acid) using a gradient program. The quantitative evaluation was performed with a diode array detector at 251 nm and 230 nm with a flow rate of 1 mL min–1. Suitability of this method for the quantitative determination of the drugs was proved by validation in accordance with the International Conference on Harmonization (ICH) guidelines. The method is selective, precise, robust and accurate and can be used for routine analysis of pharmaceutical formulations in quality control and counterfeit screening.


2017 ◽  
Vol 100 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Khalid A M Attia ◽  
Mohammed W I Nassar ◽  
Mohamed B El-Zeiny ◽  
Ahmed Serag

Abstract A reversed-phase HPLC method (RP-HPLC) with UV detection was developed and validated for the quantitative determination of cefprozil, a second-generation cephalosporin. Due to β-lactam ring instability under alkaline conditions, this RP-HPLC method was applied for the determination of cefprozil in the presence of its possible degradation product. The interactions that govern the separation process with stationary phase were investigated at both molecular and quantum mechanical levels. Moreover, electrostatic potential maps were generated to determine the sites of interaction with mobile phase. The suggested method was validated in compliance with International Conference on Harmonization guidelines and successfully applied for the determination of cefprozil in its commercial pharmaceutical formulation.


2011 ◽  
Vol 8 (4) ◽  
pp. 1958-1964 ◽  
Author(s):  
H. R. Prajapati ◽  
P. N. Raveshiya ◽  
J. M. Prajapati

A reversed phase high performance liquid chromatographic (RP–HPLC) method was developed and subsequently validated for the determination of atomoxetine hydrochloride in bulk and pharmaceutical formulation. The separation was done by a PerkinElmer Brownlee analytical C8 column (260 mm x 4.6 mm, 5 µm) using methanol: 50 mM KH2PO2buffer (PH adjusted to 6.8 with 0.1 M NaOH), 80:20 v/v as an eluent. UV detection was performed at 270 nm at a flow rate 1.0 mL/min. The validation of the method was performed, and specificity, reproducibility, precision accuracy and ruggedness were confirmed. The correlation coefficient was found to be 0.997 for atomoxetine hydrochloride. The recovery was in the range of 99.94 to 100.98% and limit of quantification was found to be 5.707 µg/mL. The method is simple, rapid, selective and economical too and can be used for the routine analysis of drug in pharmaceutical formulations.


2020 ◽  
Vol 66 (1) ◽  
pp. 85-90
Author(s):  
Zhaklina Poposka Svirkova ◽  
Zorica Arsova-Sarafinovska ◽  
Aleksandra Grozdanova

Due to the low absorptivity of bile acids, the aim of this study was to develop and validate a simple and sensitive HPLC/UV method for quantification of ursodeoxycholic acid (UDCA) in pharmaceutical formulations. Effective separation was achieved on C18 end–capped column, with gradient elution of a mobile phase composed of 0.001 M phosphate buffer (pH 2.8±0.5) – acetonitrile mix, at flow rate 1.5 mL min-1, UV detection at 200 nm and injection volumes were 50 µL. The proposed HPLC method was fully validated according to the ICH guidelines and it was found to be simple, accurate, precise and robust. Key words: ursodeoxycholic acid, HPLC/UV, pharmaceutical formulations, validation


Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 163
Author(s):  
Antonios-Dionysios G. Neofotistos ◽  
Kostas Gkountanas ◽  
Haris Boutsikaris ◽  
Yannis Dotsikas

A reversed-phase high-pressure liquid chromatography (RP-HPLC) method was developed and subsequently validated for the simultaneous determination of butamirate citrate (BC) and benzoic acid (BA) in cough syrup. The separation was performed employing a cyanopropyl column with a mobile phase consisting of 50%/50% v/v MeOH/NaH2PO4 * H2O 50 mM aqueous solution pH = 3.0. The quantitation was achieved with a diode array detector (DAD) at 210 nm. The method demonstrated a congenitally satisfactory separation, yet the acquired peaks were asymmetrical. This effect was eliminated by using 1% triethylamine in the buffer solution as a silanol blocker. In addition, the method was found to unequivocally assess the target analytes in the sample matrix and fulfilled the required specifications in relevance to specificity, linearity, accuracy, precision and stability of both the standard solutions and of the sample solutions. Lastly, an experimental design was designed in order to assess the robustness of the proposed assay. To this purpose, a graphical and a statistical approach were utilized and compared to identify the factors that should be strictly controlled during each execution of the method.


2010 ◽  
Vol 93 (4) ◽  
pp. 1113-1120
Author(s):  
Katerina Brezovska ◽  
Aneta Dimitrovska ◽  
Zoran Kitanovski ◽  
Jelena Petrusevska ◽  
Jasmina Tonic Ribarska ◽  
...  

Abstract A method based on RP-HPLC with indirect UV detection was developed for the determination of phosphates and phosphites as impurities in sodium risedronate. RP separation of the phosphates and phosphites was achieved by adding tetrabutylammonium hydroxide as an ion-pairing agent in the mobile phase. Potassium hydrogen phthalate was added to the mobile phase as an ionic chromophore in order to obtain high background absorption of the mobile phase. Separation was performed on a C18 column using a mixture of pH 8.2 buffer (containing 0.5 mM tetrabutylammonium hydroxide and 1 mM phthalate) and acetonitrile (95 + 5, v/v) as the mobile phase, with indirect UV detection at 248 nm. The validation of the method included determination of specificity/selectivity, linearity, LOD, LOQ, accuracy, precision, and robustness. The LOD was 0.86 g/mL for phosphates and 0.76 g/mL for phosphites. The LOQ was 2.60 g/mL for phosphates and 2.29 g/mL for phosphites. The developed method is suitable for quantitative determination of phosphates and phosphites as impurities in QC of sodium risedronate.


2013 ◽  
Vol 49 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Syed Naeem Razzaq ◽  
Muhammad Ashfaq ◽  
Irfana Mariam ◽  
Islam Ullah Khan ◽  
Syed Saleem Razzaq

The present study describes the development and subsequent validation of simple and accurate stability indicating RP-HPLC method for the determination of sparfloxacin and dexamethasone in pharmaceutical formulations in the presence of their stress-induced degradation products. Both the drugs and their stress-induced degradation products were separated within 10 minutes using C8 column and mixture of methanol and 0.02 M phosphate buffer pH 3.0 (60:40 v/v, respectively) as mobile phase at 270 nm using diode array detector. Regression analysis showed linearity in the range of 15-105 µg/mL for sparfloxacin and 5-35 µg/mL for dexamethasone. All the analytes were adequately resolved with acceptable tailing. Peak purity of the two drugs was also greater than 0.9999, showing no co-elution peaks. The developed method was applied for simultaneous determination of sparfloxacin and dexamethasone in pharmaceutical formulations for stability studies.


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


2012 ◽  
Vol 48 (2) ◽  
pp. 315-323 ◽  
Author(s):  
Paulo Cesar Pires Rosa ◽  
Isabel Cristina Sales Fontes Jardim

A new, simple, fast, reproducible and sensitive reversed phase HPLC method, using a new stationary phase containing embedded urea polar groups, has been developed and validated for the simultaneous determination of clobutinol hydrochloride (CLO) and doxylamine succinate (DOX) in syrups. The determination was carried out on a C8 urea column (125 mm x 3.9 mm i.d., 5 µm particle size) synthetized at the Liquid Chomatography Laboratory (LabCrom) of the Chemistry Institute of Unicamp. The mobile phase consisted of a mixture of acetonitrile:methanol:phosphate buffer (pH 2.5) in the gradient mode. The diode array detector (DAD) was operated at 230 nm for CLO and 262 nm for DOX. The method showed adequate precision, with relative standard deviations (RSD) less than 1%. The presence of the excipients did not interfere in the results of the analysis. Accuracy was determined by adding standards of the drugs to a placebo and good recovery values were obtained. The analytical curves were linear (r² 0.9999 for CLO and 0.9998 for DOX) over a wide concentration range (2.4-336 µg mL-1 for CLO and 2.3-63 µg mL-1 for DOX). The solutions were stable for at least 72 hours at room temperature. The criteria for validation using the ICH guidelines were fulfilled.


Sign in / Sign up

Export Citation Format

Share Document