scholarly journals DETEKSI GERAKAN KEPALA DAN KEDIPAN MATA DENGAN HAAR CASCADE CLASSIFIER CONTOUR DAN MORFOLOGI DALAM PENGOPERASIAN KOMPUTER UNTUK KAUM DIFABLE

JURTEKSI ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 29-36
Author(s):  
I Komang Setia Buana

Abstrack: Diffable or the word that has  defenition is “ Different Abled People” the term for disabled people. One example of disabled is people who do not have hands, so to write even have to use their feet. Along with the increasingprogress of computer technology, the role of computer technology has also increased for the benefit of humans. One of them is the field of human and computer interaction ( IMK)  or also called Human Computer Interaction ( HCI) . Although computer technology equipment is accurate and reliable, but the interaction model that is carried out is not natural as humans interact with each other, the use of such equipment to operate it requires direct contact between user and the computer. For people who dissabilities who do not have hands, it will be difficult to do so. Computer vision based interaction techniques are candidates for natural interaction techniques. The human head can also be used to replace the function of a mouse that can be used to move the cursor up and down left or right for and to click on the mouse using the blik an eye. Detection using head movements has been widely applied including in the fields of entertainment, education, and security. The camera is a tool used to make head recognition. The camera is used as a sensor to detect head movements. Head motion detection is implemented by using opency phython. Keyword: difabel, head, webcame, opencv pythonAbstrak: Difabel  atau  kata  yang  memiliki  definisi “Different  Abled People” ini adalah sebutan bagi orang cacat. Salah satu contoh kaum difabel adalah orang yang tidak mempunyai tangan, sehingga untuk menulispun harus menggunakan kaki. Seiring meningkatnya kemajuan teknologi komputer, peranan teknologi komputer juga semakin meningkat yang digunakan untuk kepentingan manusia. salah satunya adalah bidang interaksi manusia dan komputer (IMK), atau sering disebut Human Computer Interaction (HCI). Keyboard, mouse, dan joystick merupakan salah satu perangkat keras yang sering digunakan untuk interaksi antara manusia dan komputer yang bersifat mekanis. Meskipun peralatan-peralatan tersebut akurat dan handal (reliable), tetapi model interaksi yang dilakukan tidak bersifat alami sebagaimana manusia berinteraksi dengan sesamanya, penggunaan peralatan-peralatan tersebut untuk mengoperasikannya membutuhkan adanya  kontak langsung antara user dengan komputer. Untuk kaum difabel yang tidak mempunyai tangan, akan susah melakukan hal tersebut. Teknik interaksi berbasis visi komputer menjadi kandidat teknik interaksi yang bersifat alami. kepala manusia bisa juga digunakan untuk menggantikan fungsi mouse yang bisa digunakan untuk menggerakan cursor keatas kebawah kekiri maupun kekanan dan untuk melakukan klik pada mouse menggunakan kedipan mata. Pendeteksian menggunakan gerakan kepala telah diaplikasikan secara luas diantaranya pada bidang hiburan, pendidikan serta keamanan. Kamera  (webcam) merupakan alat yang digunakan untuk melakukan pengenalan kepala. Kamera ini digunakan sebagai sensor untuk mendeteksi pergerakan kepala. Pendeteksian gerakan kepala diimplementasikan dengan menggunakan opencv python.

Author(s):  
Michael Weber ◽  
Marc Hermann

This chapter gives an overview of the broad range of interaction techniques for use in ubiquitous computing. It gives a short introduction to the fundamentals of human-computer interaction and the traditional user interfaces, surveys multi-scale output devices, gives a general idea of hands and eyes input, specializes them by merging the virtual and real world, and introduces attention and affection for enhancing the interaction with computers and especially with disappearing computers. The human-computer interaction techniques surveyed here help support Weiser’s idea of ubiquitous computing (1991) and calm technology (Weiser & Brown, 1996) and result in more natural interaction techniques than in use of purely graphical user interfaces. This chapter will thus first introduce the basic principles in human-computer interaction from a cognitive perspective, but aimed at computer scientists. The humancomputer interaction cycle brings us to a discussion of input and output devices and their characteristics being used within this cycle. The interrelation of the physical and virtual world as we see it in ubiquitous computing has its predecessors in the domain of virtual and augmented realities where specific hands and eyes interaction techniques and technologies have been developed. The next step will be attentive and affective user interfaces and the use of tangible objects being manipulated directly without using dedicated I/O devices.


Author(s):  
Himanshu Bansal ◽  
Rizwan Khan

The advancement in the development of computer technology has led to the idea of human computer interaction. Research experiments in human computer interaction involves the young age group of people that are educated and technically knowledgeable. This paper focuses on the mental model in Human Computer Interaction. There are various approaches of this review paper and one of them is highlighting current approach, results and the trends in the human computer interaction and the second approach is to find out the research that have been invented a long time before and are currently lagging behind. This paper also focuses on the emotional intelligence of a user to become more user like, fidelity prototyping. The development and design of an automated system that perform such task is still being accomplished.


Author(s):  
Carl Smith

The contribution of this research is to argue that truly creative patterns for interaction within cultural heritage contexts must create situations and concepts that could not have been realised without the intervention of those interaction patterns. New forms of human-computer interaction and therefore new tools for navigation must be designed that unite the strengths, features, and possibilities of both the physical and the virtual space. The human-computer interaction techniques and mixed reality methodologies formulated during this research are intended to enhance spatial cognition while implicitly improving pattern recognition. This research reports on the current state of location-based technology including Mobile Augmented Reality (MAR) and GPS. The focus is on its application for use within cultural heritage as an educational and outreach tool. The key questions and areas to be investigated include: What are the requirements for effective digital intervention within the cultural heritage sector? What are the affordances of mixed and augmented reality? What mobile technology is currently being utilised to explore cultural heritage? What are the key projects? Finally, through a series of case studies designed and implemented by the author, some broad design guidelines are outlined. The chapter concludes with an overview of the main issues to consider when (re)engineering cultural heritage contexts.


2019 ◽  
Vol 1 (12) ◽  
Author(s):  
Kai-Shuan Shen

AbstractThis study presents the issues why gamers prefer mobility-augmented reality games to other types of game and what specific characteristics cause them to invest a large amount of their time on tireless game-play. Furthermore, the appeal of mobility-augmented reality games was studied to solve the above mentioned issues. Then, how human–computer interaction based on mobility-augmented reality games was promoted to create a new marketing mode was explored. Then, Pokémon GO, as the worldwide major mobility-augmented reality game, was selected as the research target in this study. The researcher interviewed 9 experts, collected 235 Knasei words from 33 articles, and surveyed 335 gamers through a questionnaire to collect the data about users’ preferences. A preference-based study was believed to disclose the motivated reasons for the appeal of mobility-augmented reality games. The researcher analyzed the gathered Kansei concepts and questionnaires using the two-stage procedures, including evaluation grid method (EGM) and Quantification Theory Type I. During the first stage the hierarchy of the relationship among the types of appeal factors, the reasons for users’ preferences, and the explicit design characteristics of Pokémon GO present the semantic structure of appeal and were determined using EGM through the accumulation of the review of articles and the interviews of experts. During the second stage the strongest two original evaluation items of Pokémon GO are determined as “social interaction” and “scenario interaction” based on the statistical analysis of Quantification Theory Type I, and their corresponding “upper-level” and “lower-level” considerations are proved to have influence on them. Finally, the paper found that the popularity of Pokémon GO can be ascribed to the design of the innovative models of game interaction, which targets the psychological preferences of gamers. This means that the interaction model between a customer and an enterprise can be developed outside the box and a new type of marketing can be formed. The study proved that the innovative models of interaction successfully drove gamers’ motivations to play Pokémon GO. Designers and researchers of mobility-augmented reality games can absorb important information through this study. This study enriches the field of mobile communication, online marketing, and human–computer interaction in cyberspace.


2019 ◽  
Vol 17 (4) ◽  
pp. 357-381
Author(s):  
Emek Erdolu

This article serves to the larger quest for increasing our capacities as designers, researchers, and scholars in understanding and developing human-computer interaction in computer-aided design. The central question is on how to ground the related research work in input technologies and interaction techniques for computer-aided design applications, which primarily focus on technology and implementation, within the actual territories of computer-aided design processes. To discuss that, the article first reviews a collection of research studies and projects that present input technologies and interaction techniques developed as alternative or complimentary to the mouse as used in computer-aided design applications. Based on the mode of interaction, these studies and projects are traced in four categories: hand-mediated systems that involve gesture- and touch-based techniques, multimodal systems that combine various ways of interaction including speech-based techniques, experimental systems such as brain-computer interaction and emotive-based techniques, and explorations in virtual reality- and augmented reality-based systems. The article then critically examines the limitations of these alternative systems related to the ways they have been envisioned, designed, and situated in studies as well as of the two existing research bases in human-computer interaction in which these studies could potentially be grounded and improved. The substance of examination is what is conceptualized as “frameworks of thought”—on variables and interrelations as elements of consideration within these efforts. Building upon the existing frameworks of thought, the final part discusses an alternative as a vehicle for incorporating layers of the material cultures of computer-aided design in designing, analyzing, and evaluating computer-aided design-geared input technologies and interaction techniques. The alternative framework offers the potential to help generate richer questions, considerations, and avenues of investigation.


1988 ◽  
Vol 32 (5) ◽  
pp. 284-287 ◽  
Author(s):  
Sharon L. Greene ◽  
John D. Gould ◽  
Stephen J. Boies ◽  
Antonia Meluson ◽  
Marwan Rasamny

Five different human-computer interaction techniques were studied to determine the relative advantages of entry-based and selection-based methods. Gould, Boies, Meluson, Rasamny, and Vosburgh (1988), found that entry techniques aided by either automatic or requested string completion, were superior to various selection-based techniques. This study examines unaided as well as aided entry techniques, and compares them to selection-based methods. Variations in spelling difficulty and database size were studied for their effect on user performance and preferences. The main results were that automatic string completion was the fastest method and selection techniques were better than unaided entry techniques, especially for hard-to-spell words. This was particularly true for computer-inexperienced participants. The database size had its main influence on performance with the selection techniques. In the selection and aided-entry methods there was a strong correlation between the observed keystroke times and the minimum number of keystrokes required by a task.


Sign in / Sign up

Export Citation Format

Share Document