scholarly journals A Historical Account of the Evolution and Emergence of the District Heating Sector in Denmark: How Large-scale Heat Planning Increased Energy Efficiency and Energy Systems Flexibility

Author(s):  
Katinka Johansen
Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1127 ◽  
Author(s):  
Tatiana Loureiro ◽  
Miika Rämä ◽  
Raymond Sterling ◽  
Marco Cozzini ◽  
Meritxell Vinyals ◽  
...  

Workshop organized by INDIGO project as a collaborative activity among EU funded projects in the area of District Heating and Cooling. The objective of the workshop was twofold: (1) to create a cluster of European funded projects working in the area of District Energy Systems; and (2) to create a networking opportunity in which to share experiences on the results and difficulties of the researches, and to identify synergies.


Author(s):  
Juan Gea Bermúdez ◽  
Kaushik Das ◽  
Hardi Koduvere ◽  
Matti Juhani Koivisto

This paper proposes a mathematical model to simulate Day-ahead markets of large-scale multi-energy systems with high share of renewable energy. Furthermore, it analyses the importance of including unit commitment when performing such analysis. The results of the case study, which is performed for the North Sea region, show the influence of massive renewable penetration in the energy sector and increasing electrification of the district heating sector towards 2050, and how this impacts the role of other energy sources such as thermal and hydro. The penetration of wind and solar is likely to challenge the need for balancing in the system as well as the profitability of thermal units. The degree of influence of the unit commitment approach is found to be dependent on the configuration of the energy system. Overall, including unit commitment constraints with integer variables leads to more realistic behaviour of the units, at the cost of increasing considerably the computational time. Relaxing integer variables reduces significantly the computational time, without highly compromising the accuracy of the results. The proposed model, together with the insights from the study case, can be specially useful for system operators for optimal operational planning.


2013 ◽  
Vol 448-453 ◽  
pp. 2856-2859
Author(s):  
Wei Na ◽  
Yan Song ◽  
Lei Yang

Over 600 million square meter heating area use the district heating system in Beijing up to 2013. The construction and operation level of many heating systems are diverse. It leads to the difference in the heating energy consumption and cost. The obstacles that impacts on the energy efficiency improvement for the district heating system in Beijing were presented. The primary job to reduce the gross heating energy consumption is to evaluate the energy efficiency of the heating system, reasonably. The aim of the paper was to provide an improved method to evaluate the energy efficiency of a district heat system.The energy conversion between the different typical parts of a heating system was discussed: the source, the primary network, the secondary network, the heat exchanger station and the building. Also, six district heating system in Beijing was evaluated by the method to illustrate the proposed technique.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2520 ◽  
Author(s):  
Francesco Calise ◽  
Mário Costa ◽  
Qiuwang Wang ◽  
Xiliang Zhang ◽  
Neven Duić

EU energy policy is more and more promoting a resilient, efficient and sustainable energy system. Several agreements have been signed in the last few months that set ambitious goals in terms of energy efficiency and emission reductions and to reduce the energy consumption in buildings. These actions are expected to fulfill the goals negotiated at the Paris Agreement in 2015. The successful development of this ambitious energy policy needs to be supported by scientific knowledge: a huge effort must be made in order to develop more efficient energy conversion technologies based both on renewables and fossil fuels. Similarly, researchers are also expected to work on the integration of conventional and novel systems, also taking into account the needs for the management of the novel energy systems in terms of energy storage and devices management. Therefore, a multi-disciplinary approach is required in order to achieve these goals. To ensure that the scientists belonging to the different disciplines are aware of the scientific progress in the other research areas, specific Conferences are periodically organized. One of the most popular conferences in this area is the Sustainable Development of Energy, Water and Environment Systems (SDEWES) Series Conference. The 12th Sustainable Development of Energy, Water and Environment Systems Conference was recently held in Dubrovnik, Croatia. The present Special Issue of Energies, specifically dedicated to the 12th SDEWES Conference, is focused on five main fields: energy policy and energy efficiency in smart energy systems, polygeneration and district heating, advanced combustion techniques and fuels, biomass and building efficiency.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 88
Author(s):  
Juan Gea-Bermúdez ◽  
Kaushik Das ◽  
Hardi Koduvere ◽  
Matti Juhani Koivisto

This paper proposes a mathematical model in order to simulate Day-ahead markets of large-scale multi-energy systems with a high share of renewable energy. Furthermore, it analyses the importance of including unit commitment when performing such analysis. The results of the case study, which is performed for the North Sea region, show the influence of massive renewable penetration in the energy sector and increasing electrification of the district heating sector towards 2050, and how this impacts the role of other energy sources, such as thermal and hydro. The penetration of wind and solar is likely to challenge the need for balancing in the system as well as the profitability of thermal units. The degree of influence of the unit commitment approach is found to be dependent on the configuration of the energy system. Overall, including unit commitment constraints with integer variables leads to more realistic behaviour of the units, at the cost of considerably increasing the computational time. Relaxing integer variables significantly reduces the computational time, without highly compromising the accuracy of the results. The proposed model, together with the insights from the study case, can be especially useful for system operators for optimal operational planning.


Author(s):  
Mark Endrei ◽  
Chao Jin ◽  
Minh Ngoc Dinh ◽  
David Abramson ◽  
Heidi Poxon ◽  
...  

Rising power costs and constraints are driving a growing focus on the energy efficiency of high performance computing systems. The unique characteristics of a particular system and workload and their effect on performance and energy efficiency are typically difficult for application users to assess and to control. Settings for optimum performance and energy efficiency can also diverge, so we need to identify trade-off options that guide a suitable balance between energy use and performance. We present statistical and machine learning models that only require a small number of runs to make accurate Pareto-optimal trade-off predictions using parameters that users can control. We study model training and validation using several parallel kernels and more complex workloads, including Algebraic Multigrid (AMG), Large-scale Atomic Molecular Massively Parallel Simulator, and Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. We demonstrate that we can train the models using as few as 12 runs, with prediction error of less than 10%. Our AMG results identify trade-off options that provide up to 45% improvement in energy efficiency for around 10% performance loss. We reduce the sample measurement time required for AMG by 90%, from 13 h to 74 min.


Author(s):  
Karl‐Kiên Cao ◽  
Jannik Haas ◽  
Evelyn Sperber ◽  
Shima Sasanpour ◽  
Seyedfarzad Sarfarazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document