scholarly journals Influence of simulated body fluid (normal and inflammatory) on corrosion resistance of anodized titanium

2021 ◽  
Vol 10 (10) ◽  
pp. e122101018606
Author(s):  
Sandra Raquel Kunst ◽  
David de Oliveira Cerveira ◽  
Jane Zoppas Ferreira ◽  
Thaís Francine Graef ◽  
Joseane de Andrade Santana ◽  
...  

Titanium has been widely used as biomaterial, especially in implantables, in which osseointegration and corrosion resistance are needed. Studies have shown that the thickness and roughness of porous titanium oxides are related to the osseointegration. According to the literature, the best anodizing conditions for obtaining nanotubes in titanium oxide are the use of a voltage of 10V in an electrolyte containing 0.15% HF in H3PO4 (w/v). In this study, was to evaluate the corrosion capacity of simulated body fluid (SBF) over titanium samples anodized on 1 mol. L-1 H3PO4 and 0.15% HF (w/v) in 1 mol.L-1 H3PO4. To perform these evaluations samples of commercially pure titanium grade 2 were used. Samples were analyzed by scanning electron microscopy, atomic force microscopy and by electrochemical corrosion tests in healthy and simulating inflammatory conditions. The hydrophobicity of oxides was tested by sessile drop essay, also using SBF. Results show that oxides obtained in H3PO4 electrolyte, barrier type oxides, work better than the porous oxides obtained in H3PO4/HF electrolyte, suggesting that barrier oxide exhibit more biomaterial characteristics than the porous oxide. These results agree with previous studies, and stand out mainly in relation to the tests performed under inflammatory conditions, more aggressive to the biomaterial.

Alloy Digest ◽  
2020 ◽  
Vol 69 (6) ◽  

Abstract UPM CP Titanium Grade 3 (UNS R50550) is an unalloyed commercially pure titanium that exhibits moderate strength (higher strength than that of Titanium Grade 2), along with excellent formability and corrosion resistance. It offers the highest ASME allowable design stress of any commercially pure grade of titanium, and can be used in continuous service up to 425 °C (800 °F) and in intermittent service up to 540 °C (1000 °F). This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-167. Producer or source: United Performance Metals.


10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsin Nazir ◽  
Ong Pei Ting ◽  
Tan See Yee ◽  
Saravanan Pushparajan ◽  
Dasan Swaminathan ◽  
...  

This study investigated the viability of coating commercially pure titanium (CPTi) surfaces, modified via sandblasting and acid etching, with hydroxyapatite (HA)/tricalcium phosphate coatings using a simulated body fluid (SBF) solution. The samples were immersed in SBF from 3 to 7 days. The morphology and the chemistry of the HA/tricalcium phosphate coating were then analysed. Prior to immersion in SBF, the samples were sandblasted and acid etched to mimic the morphology and roughness of commercially available dental implants. The SBF aided in the formation of crystalline HA/tricalcium phosphate coatings on all the samples. The coatings were uniform and had roughness values higher than the underlying substrate. The highest roughness values for the coatings on the surfaces were obtained at 7 days of immersion in SBF with averageSavalues of 2.9 ± 0.2 µm. The presence of HA/tricalcium phosphate on the surfaces was confirmed by the Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS), the X-Ray Diffraction (XRD), and the Fourier Transform Infrared Spectrometer (FTIR) analysis. This study shows that it is possible to obtain an adequate and uniform hydroxyapatite coating on pure titanium substrates in a shorter period of time with characteristics that favour the ultimate goal of implants therapy, that is, osseointegration.


Alloy Digest ◽  
2021 ◽  
Vol 70 (4) ◽  

Abstract L. Klein Titan Grade 2 is an unalloyed, commercially pure titanium grade. It is the most widely used commercially pure titanium grade. It offers a combination of moderate strength and good ductility, with outstanding corrosion resistance in many challenging service environments. L. Klein Titan Grade 2 can operate in continuous service up to 425 °C (800 °F) and in intermittent service up to 540 °C (1005 °F). This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance and wear resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-177. Producer or source: L. Klein SA.


Alloy Digest ◽  
2021 ◽  
Vol 70 (10) ◽  

Abstract Austral Wright Titanium Grade 2 (UNS R50400) is an unalloyed, commercially pure titanium grade. It is the most widely used commercially pure titanium grade. It offers a combination of moderate strength (similar to that of austenitic stainless steels), good formability, outstanding corrosion resistance, and good weldability. Austral Wright Titanium Grade 2 can operate in continuous service up to 425 °C (800 °F) and in intermittent service up to 540 °C (1005 °F). This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Ti-183. Producer or source: Austral Wright Metals.


Sign in / Sign up

Export Citation Format

Share Document