scholarly journals Determination of thickness and refractive index of SiO2 thin films using the cross-entropy global optimization method

2021 ◽  
Vol 10 (10) ◽  
pp. e326101019028
Author(s):  
Sávio José Vieira Zaccaro ◽  
Adhimar Flávio Oliveira ◽  
Rero Marques Rubinger ◽  
Crediana Chris de Siqueira ◽  
Roberto Affonso da Costa Junior

Silicon dioxide (SiO2) is a material that is abundant in nature and has wide application in semiconductor and insulating devices. In this work, a set of six SiO2 samples were grown on a Sigma-Aldrich Silicon substrate, varying the growth time and temperature. This set of samples were grown using times of 10 and 12h and temperatures of 800, 900, and 1000 ºC, under ambient atmosphere. After film growth, reflectance measurements were performed on the films and the substrate, using the Stellarnet UV-VIS-NIR spectrophotometer between 194 and 1081.5 nm. These measurements were modeled using a global optimization method, called Cross-entropy, together with the Bootstrapping resampling technique, seeking to robustly and statistically determine the thin film refractive index as a function of the wavelength and its thickness. To estimate the refractive index of the SiO2 thin film, the Cauchy model was used. For the substrate, reflectance measurements were used. The method proved to be efficient, presenting thickness values that were validated according to growth parameters and literature data. This method proved to be an important and low-cost tool, compared to traditional methods, to help in the steps of building thin films for semiconductor and insulating devices, thus improving their physical properties and enabling the development of new devices.

Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 112
Author(s):  
Qais M. Al-Bataineh ◽  
Mahmoud Telfah ◽  
Ahmad A. Ahmad ◽  
Ahmad M. Alsaad ◽  
Issam A. Qattan ◽  
...  

We report the synthesis and characterization of pure ZnO, pure CeO2, and ZnO:CeO2 mixed oxide thin films dip-coated on glass substrates using a sol-gel technique. The structural properties of as-prepared thin film are investigated using the XRD technique. In particular, pure ZnO thin film is found to exhibit a hexagonal structure, while pure CeO2 thin film is found to exhibit a fluorite cubic structure. The diffraction patterns also show the formation of mixed oxide materials containing well-dispersed phases of semi-crystalline nature from both constituent oxides. Furthermore, optical properties of thin films are investigated by performing UV–Vis spectrophotometer measurements. In the visible region, transmittance of all investigated thin films attains values as high as 85%. Moreover, refractive index of pure ZnO film was found to exhibit values ranging between 1.57 and 1.85 while for CeO2 thin film, it exhibits values ranging between 1.73 and 2.25 as the wavelength of incident light decreases from 700 nm to 400 nm. Remarkably, refractive index of ZnO:CeO2 mixed oxide-thin films are tuned by controlling the concentration of CeO2 properly. Mixed oxide-thin films of controllable refractive indices constitute an important class of smart functional materials. We have also investigated the optoelectronic and dispersion properties of ZnO:CeO2 mixed oxide-thin films by employing well-established classical models. The melodramatic boost of optical and optoelectronic properties of ZnO:CeO2 mixed oxide thin films establish a strong ground to modify these properties in a skillful manner enabling their use as key potential candidates for the fabrication of scaled optoelectronic devices and thin film transistors.


2015 ◽  
Vol 54 (3) ◽  
pp. 605-623 ◽  
Author(s):  
Anthony C. Didlake ◽  
Gerald M. Heymsfield ◽  
Lin Tian ◽  
Stephen R. Guimond

AbstractThe coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High-Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward-pointing and conically scanning beams. The coplane technique interpolates radar measurements onto a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared with a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.


Sign in / Sign up

Export Citation Format

Share Document