scholarly journals A water-energy balance application with adaptations to a brazilian water supply system

2021 ◽  
Vol 10 (10) ◽  
pp. e380101019039
Author(s):  
Matheus Gonçalves Silqueira ◽  
Fernando das Graças Braga da Silva ◽  
Alex Takeo Yasumura Lima Silva ◽  
Matheus David Guimarães Barbedo

According to the Alliance to Save Energy, between 2 % and 3 % of the total electric energy consumed in the world is used for water pumping in supply systems, with the consumption reduction potential through energy efficiency and conservation measures being estimated at 25 %. In Brazil, the water supply sector corresponds to 2.6 % of the total energy consumed in the country, with pumping systems being responsible for over 90 % of the total energy consumption. It is extremely common to find supersized facilities with pump motor sets operating outside their ideal points, with it being a common practice to perform flow and pressure control through the installation of valves. The use of reducing valves inserts unnecessary pressure drops into the hydraulic system, increasing energy consumption. The objective of this work is to present an energy balance of a study sector of the Autonomous Water and Sewage Service (AWSS) of a municipality in the south of Minas Gerais, Brazil, aiming to elucidate the electric energy consumption of the system and where the reduction in such consumption may occur. For this, we measured data such as the efficiency of the pump motor sets, calculated performance indicators and water loss indices, and applied the energy balance adapted. This work presents an application of a water-energy balance with adaptations to a Brazilian water supply system, under the perspective of the energy efficiency in lift station pump motor sets.

2015 ◽  
Vol 72 (2) ◽  
Author(s):  
Mohd Ismail Jusoh ◽  
Folorunso Taliha Abiodun ◽  
Fatimah Sham Ismail ◽  
Sohailah Shafie

Generally, high operational cost is associated with all water supply system. This is as a result of the high amount of electric energy consumption ascribed to the system due to its components. The water supply system of the Mara-Japan Industrial Institute (MJII), Beranang, Selangor is one of such system that suffers this challenge of high operational cost. In this paper we have applied the use of an Adaptive Weighted Sum Genetic Algorithm to optimize the system operations such that it minimizes the high energy consumption as well as ensuring the overall reliability of the water level in the reservoir.  The results obtained from the optimized model of the system show a promising and a significant reduction to the tune of 34.97% in the amount of energy consumed as compared with that of normal operations.


Author(s):  
Li-juan Qu ◽  
Li-nan Lei ◽  
Wei Chen ◽  
Jin-yuan Qian

In 2007, Chinese Ministry of Education (MOE) and Ministry of Housing & Urban-Rural Development (MOHURD) carried out the Campus Resource Conservation Actions, in order to take full use of resources and to improve the energy efficiency. However, due to the large amounts of universities, the total energy consumption and the energy efficiency situation have no objective statistics. Taking modeling the energy consumption of university buildings as the starting point, this paper analyzes the characteristics of university buildings in China. Then, we do the prediction, trend and potential analysis of the total energy consumption in 2020. In addition, four strategies for energy efficiency management are carried out, which might be helpful for all the university managers and related departments.


2020 ◽  
Vol 10 (2) ◽  
pp. 309-319
Author(s):  
Nadya Lizeth Serrano Abarca ◽  
Welitom Ttatom Pereira da Silva

Abstract This study aimed to present a methodology for locating water distribution reservoirs in rural Andean areas (isolated areas, low-income population, mountainous region). The research methodology consisted of the following steps: (1) description of the problem; (2) development of the DR location protocol; (3) obtaining an algorithm; (4) calibration and adjustment; and (5) application. The obtained algorithm was based on the classification and overlapping operations of five-parameter maps (pressure limits – pressure in the water supply system from 5 to 40 mH2O; supply by gravity – guarantee of gravity as energy for water movement; accessibility – use of unprotected areas or with restricted occupation; stability, greater distance from geological fault; and, proximity to population concentration, shorter distance between population centres). The overlapping of these parameters enabled us to identify a region of candidate points and select the best location point for the reservoir. The algorithm was applied to a real case indicating satisfactory results. A methodology for locating water distribution reservoirs in rural areas that have important economic constraints, difficult access (mountainous region) and high geospatial dispersion was found. Improvements in methodological steps can still be considered, for example, forecasting the use of pressure control devices in the water supply system.


2017 ◽  
Vol 38 (4) ◽  
pp. 400-407 ◽  
Author(s):  
LT Wong ◽  
KW Mui ◽  
Y Zhou

High-rise housing, a trend in densely populated cities around the world, increases energy use for water supply and corresponding greenhouse gas emissions. With emphasis on improving the energy efficiency in the water supply systems, this paper proposes an energy efficiency evaluation measure for the water supply system designs and demonstrates its potential applications in a typical high-rise water supply system. In the proposed measure, the energy efficiency in a water supply system is defined as the potential energy required at the demand locations divided by the pumping energy of the supply system. The outcome of this paper provides useful benchmark references not only for the water supply system designs but also for the water demand management programmes in buildings. Practical application: An energy efficiency evaluation measure for the water supply system designs is used to establish benchmark references for not only the water supply system designs but also for the water demand management programmes in buildings.


2016 ◽  
Vol 64 ◽  
pp. 660-671 ◽  
Author(s):  
Xiaohong Zhang ◽  
Yan Qi ◽  
Yanqing Wang ◽  
Jun Wu ◽  
Lili Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document