scholarly journals A preliminary growth and yield model for Eucalyptus globoidea Blakely plantations in New Zealand

2020 ◽  
Vol 50 ◽  
Author(s):  
Serajis Salekin ◽  
Euan G. Mason ◽  
Justin Morgenroth ◽  
Dean F. Meason

Background: New Zealand’s plantation forest industry is dominated by the exotic species radiata pine (Pinus radiata D.Don), which comprises approximately 90% of the net stocked area. However, there is interest in introducing new species to: (a) provide wood that is naturally decay-resistant as a substitute for wood treated with preservatives; (b) match species to the wide variety of environmental conditions in New Zealand; and (c) reduce reliance on P. radiata. Some Eucalyptus species are considered as potential alternatives to P. radiata, specifically those that can survive in resource-limited conditions and produce high quality wood. While Eucalyptus species are grown in plantations in many regions of the world, limited information is available on their growth in New Zealand. Eucalyptus globoidea Blakley is of particular interest and has been planted in trials throughout New Zealand. A complete set of preliminary growth and yield models for this species will satisfy the initial information requirements for diversifying New Zealand’s plantation forest industry. Methods: A set of growth and yield models was developed and validated, based on data from 29 E. globoidea permanent sample plots (PSPs) located mostly in North Island and a few in South Island of New Zealand. Trees were measured at different time intervals in these plots, with height and diameter at breast height (DBH) ranging from 0.1–39.8 m and 0.1–62.3 cm, respectively. An algebraic difference approach (ADA) was applied to model mean top height, basal area, maximum diameter, and standard deviation of DBH. Non-linear regression equations were used to project stand volume and height-diameter relationship, and Reineke’s stand density index (SDI) approach was employed to model mortality. Results: Mean top height, maximum diameter, and standard deviation of DBH were best fitted by Von Bertalanffy-Richards (SE=1.1 m), Hossfeld (SE=2.4 cm), and Schumacher polymorphic (SE=1.6 cm) difference equations, respectively. Basal area data were modelled with high precision (SE=6.9 m2 ha-1) by the Schumacher anamorphic difference equation. Reineke’s SDI approach was able to explain the self-thinning as a reduction in the number of stems per hectare. Stand-level volume per hectare and height-diameter relationship models were precise when including site-specific variables with standard errors of 40.5 m3 ha-1 and 3.1 m, respectively. Conclusion: This study presents a set of preliminary growth and yield models for E. globoidea to project plot-level growth attributes. The models were path invariant and satisfied basic traditional mensurational-statistical growth and yield model assumptions. These models will provide forest growers and managers with important fundamental information about the growth and yield of E. globoidea.

1991 ◽  
Vol 15 (4) ◽  
pp. 213-216 ◽  
Author(s):  
Quang V. Cao ◽  
Kenneth M. Durand

Abstract A compatible growth and yield model was developed based on remeasurement data collected from 183 plots on unthinned improved eastern cottonwood (Populus deltoides Bartr.) plantations in the lower Mississippi Delta. The Sullivan and Clutter (1972) equation form was selected for predicting cubic-foot volume yield and projecting volume from site index and initial age and basal area. Yield equations explained 97% and 94%, respectively, of the variations in total outside bark and merchantable inside bark volumes. Mean annual increment of merchantable volume culminated between 8 and 15 years, depending on site index and initial basal area. South. J. Appl. For. 15(4):213-216.


1984 ◽  
Vol 14 (2) ◽  
pp. 295-295
Author(s):  
Robert L. Bailey ◽  
Kenneth D. Ware

not available


2019 ◽  
Author(s):  
Kevin B Hall ◽  
Jl Stape ◽  
Bronson P Bullock ◽  
Doug Frederick ◽  
Jeff Wright ◽  
...  

Abstract In recent Eucalyptus cold-tolerance trials, E. benthamii has shown good growth rates as well as cold tolerance for USDA Plant Hardiness Zones 8 and 9. This study developed growth and yield models for E. benthamii in the southeastern United States. A network of 182 temporary sample plots of E. benthamii ranging in age from 1.5 to 13.3 years was established, and inventory data were collected. Site quality was determined by fitting a polymorphic site index curve, whereas a function for stand basal area based on age, dominant height, and site occupancy was fitted. Stand-level volume and dry-weight biomass prediction equations were fitted as a function of dominant height and basal area. Based on the growth and yield model results, mean annual increments ranged from 26.4 m3 ha–1 year–1 at rotation age 6 years on the best sites to 13.7 m3 ha–1 year–1 at rotation age 10 years on the poorest sites. This is the first published set of management-oriented models for land managers considering planting E. benthamii in the southeastern United States.


1996 ◽  
Vol 13 (4) ◽  
pp. 164-170 ◽  
Author(s):  
Donald A. Perala ◽  
George E. Host ◽  
James K. Jordan ◽  
Christopher J. Cieszewski

Abstract A simulation model is described that grows stands of aspen of given age, site quality, and stocking from establishment to breakup. Specifying mean July air temperature allows custom application to most aspen growing regions in North America and Scandinavia. The program predicts total yields in number of trees, basal area, and biomass; and merchantable yields in cubic feet and cords for user-specified utilization standards, and in board feet, Scribner. North. J. Appl. For. 13(4):164-170.


1999 ◽  
Vol 29 (7) ◽  
pp. 985-992 ◽  
Author(s):  
E G Mason ◽  
P G Milne

Two factorial experiments examining effects of weed control, fertilization, and soil cultivation on Pinus radiata D. Don growth were established in the Canterbury region of New Zealand during 1983. The experiments were measured every year for the first 5 years, during which effects of both weed control and fertilization were detected. Midrotation measurements of height and diameter at breast height were taken. Growth in subplot mean height and basal area per unit area over 3 years in one case and 4 years in the other, up to ages 13 and 14, respectively, was analysed. Results showed that the initial time gain due to weed control and fertilization was preserved at midrotation and that there was no continuing divergence between treated and untreated subplots after weed control. There was, however, continuing divergence after fertilization on one site where topsoil had been shifted into heaps during land clearing. Modelling revealed that effects of weed control and fertilization on basal area growth and yield of stands could be represented by the same difference equation with an additive term to represent the effects of treatments. On the other hand an existing regional growth and yield model failed to represent these effects properly.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 810
Author(s):  
Sebastian Palmas ◽  
Paulo C. Moreno ◽  
Wendel P. Cropper ◽  
Alicia Ortega ◽  
Salvador A. Gezan

Reliable information on stand dynamics and development is needed to improve management decisions on mixed forests, and essential tools for this purpose are forest growth and yield (G&Y) models. In this study, stand-level G&Y models were built for cohorts within the natural mixed second-growth Nothofagus-dominated forests in Chile. All currently available (but limited) data, consisting of a series of stratified temporary and permanent plots established in the complete range of this forest type, were used to fit and validate these models. Linear and nonlinear models were considered, where dominant stand age, number of trees, and the proportion of basal area of Nothofagus species resulted in significant predictors to project future values of stand basal area for the different cohorts (with R2 > 0.51 for the validation datasets). Mortality was successfully modeled (R2 = 0.79), based on a small set of permanent plots, using the concept of self-thinning with a proposed model defined by the idea that, as stands get closer to a maximum density, they experience higher levels of mortality. The evaluation of these models indicated that they adequately represent the current understanding of dynamics of basal area and mortality of Nothofagus and companion species in these forests. These are the first models fitted over a large geographical area that consider the dynamics of these mixed forests. It is suggested that the proposed models should constitute the main components of future implementations of G&Y model systems.


2007 ◽  
Vol 22 (4) ◽  
pp. 269-277
Author(s):  
D. Pascual ◽  
D.A. Maguire ◽  
F. Bravo

Abstract Evaluations of response to variable silvicultural treatments play a key role in developing sustainable forest management. To evaluate silvicultural response, a growth and yield model is needed. A comparison between similar species could act as a logical first step toward building a growth and yield model and to test the efficiency of the calibration of an existing ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growth model to a Mediterranean maritime pine (Pinus pinaster Ait. ssp. mesogeensis) growth model. This study aimed at (1) comparing the diameter growth pattern between ponderosa and Mediterranean maritime pine, and (2) assessing the potential of ORGANON for simulating Mediterranean maritime pine growth and yield. The first objective was addressed by fitting a diameter growth equation for Mediterranean maritime pine and comparing it with patterns in ponderosa pine growth represented by the corresponding equation in ORGANON. The second objective was addressed by growing Mediterranean maritime pine as ponderosa pine in ORGANON, conditional on observed diameter growth rates of Mediterranean maritime pine in Spain. The results emphasized the unsuitability of ORGANON for predicting diameter growth of Mediterranean maritime pine in Spain. Mediterranean maritime pine diameter growth depended on basal area in trees with a diameter larger than the subject tree, (BAL) which, in our context is a subrogate of competition from above.


2009 ◽  
Vol 85 (1) ◽  
pp. 57-64 ◽  
Author(s):  
C -H. Ung ◽  
P Y Bernier ◽  
X J Guo ◽  
M -C. Lambert

We have adjusted two growth and yield models to temporary sample plots from across Canada, and used climate variables in lieu of phytometric indices such as site index to represent, in part, the site-level variability in growth potential. Comparison of predicted increments in plot-level height, basal area and merchantable wood volume to increments of these variables measured in permanent sample plots shows a moderate to poor predictive ability. Comparison with the performance of four operational growth and yield models from different provinces across Canada shows comparable predictive power of this new model versus that of the provincial models. Based on these results, we suggest that the simplification of regional growth and yield models may be achieved without further loss of predictive power, and that the large error in the prediction of growth increment is mostly associated with the use of temporary sample plots which, by definition, contain little information on stand dynamics. We also suggest that, because of the empirical nature of these growth and yield models, the scale of application should determine the appropriate scale of the model. National estimates of forest growth are therefore less likely to be biased if obtained from a national model only than if obtained from a combination of regional models, where those exist, gap-filled with estimates from a national model. Key words: yield model, merchantable wood volume, stand age, climatic variables, simultaneous regression, robust regression


Sign in / Sign up

Export Citation Format

Share Document