scholarly journals A Growth and Yield Model for Eucalyptus benthamii in the Southeastern United States

2019 ◽  
Author(s):  
Kevin B Hall ◽  
Jl Stape ◽  
Bronson P Bullock ◽  
Doug Frederick ◽  
Jeff Wright ◽  
...  

Abstract In recent Eucalyptus cold-tolerance trials, E. benthamii has shown good growth rates as well as cold tolerance for USDA Plant Hardiness Zones 8 and 9. This study developed growth and yield models for E. benthamii in the southeastern United States. A network of 182 temporary sample plots of E. benthamii ranging in age from 1.5 to 13.3 years was established, and inventory data were collected. Site quality was determined by fitting a polymorphic site index curve, whereas a function for stand basal area based on age, dominant height, and site occupancy was fitted. Stand-level volume and dry-weight biomass prediction equations were fitted as a function of dominant height and basal area. Based on the growth and yield model results, mean annual increments ranged from 26.4 m3 ha–1 year–1 at rotation age 6 years on the best sites to 13.7 m3 ha–1 year–1 at rotation age 10 years on the poorest sites. This is the first published set of management-oriented models for land managers considering planting E. benthamii in the southeastern United States.

1991 ◽  
Vol 15 (4) ◽  
pp. 213-216 ◽  
Author(s):  
Quang V. Cao ◽  
Kenneth M. Durand

Abstract A compatible growth and yield model was developed based on remeasurement data collected from 183 plots on unthinned improved eastern cottonwood (Populus deltoides Bartr.) plantations in the lower Mississippi Delta. The Sullivan and Clutter (1972) equation form was selected for predicting cubic-foot volume yield and projecting volume from site index and initial age and basal area. Yield equations explained 97% and 94%, respectively, of the variations in total outside bark and merchantable inside bark volumes. Mean annual increment of merchantable volume culminated between 8 and 15 years, depending on site index and initial basal area. South. J. Appl. For. 15(4):213-216.


1984 ◽  
Vol 14 (2) ◽  
pp. 295-295
Author(s):  
Robert L. Bailey ◽  
Kenneth D. Ware

not available


1996 ◽  
Vol 13 (4) ◽  
pp. 164-170 ◽  
Author(s):  
Donald A. Perala ◽  
George E. Host ◽  
James K. Jordan ◽  
Christopher J. Cieszewski

Abstract A simulation model is described that grows stands of aspen of given age, site quality, and stocking from establishment to breakup. Specifying mean July air temperature allows custom application to most aspen growing regions in North America and Scandinavia. The program predicts total yields in number of trees, basal area, and biomass; and merchantable yields in cubic feet and cords for user-specified utilization standards, and in board feet, Scribner. North. J. Appl. For. 13(4):164-170.


2020 ◽  
Vol 50 ◽  
Author(s):  
Serajis Salekin ◽  
Euan G. Mason ◽  
Justin Morgenroth ◽  
Dean F. Meason

Background: New Zealand’s plantation forest industry is dominated by the exotic species radiata pine (Pinus radiata D.Don), which comprises approximately 90% of the net stocked area. However, there is interest in introducing new species to: (a) provide wood that is naturally decay-resistant as a substitute for wood treated with preservatives; (b) match species to the wide variety of environmental conditions in New Zealand; and (c) reduce reliance on P. radiata. Some Eucalyptus species are considered as potential alternatives to P. radiata, specifically those that can survive in resource-limited conditions and produce high quality wood. While Eucalyptus species are grown in plantations in many regions of the world, limited information is available on their growth in New Zealand. Eucalyptus globoidea Blakley is of particular interest and has been planted in trials throughout New Zealand. A complete set of preliminary growth and yield models for this species will satisfy the initial information requirements for diversifying New Zealand’s plantation forest industry. Methods: A set of growth and yield models was developed and validated, based on data from 29 E. globoidea permanent sample plots (PSPs) located mostly in North Island and a few in South Island of New Zealand. Trees were measured at different time intervals in these plots, with height and diameter at breast height (DBH) ranging from 0.1–39.8 m and 0.1–62.3 cm, respectively. An algebraic difference approach (ADA) was applied to model mean top height, basal area, maximum diameter, and standard deviation of DBH. Non-linear regression equations were used to project stand volume and height-diameter relationship, and Reineke’s stand density index (SDI) approach was employed to model mortality. Results: Mean top height, maximum diameter, and standard deviation of DBH were best fitted by Von Bertalanffy-Richards (SE=1.1 m), Hossfeld (SE=2.4 cm), and Schumacher polymorphic (SE=1.6 cm) difference equations, respectively. Basal area data were modelled with high precision (SE=6.9 m2 ha-1) by the Schumacher anamorphic difference equation. Reineke’s SDI approach was able to explain the self-thinning as a reduction in the number of stems per hectare. Stand-level volume per hectare and height-diameter relationship models were precise when including site-specific variables with standard errors of 40.5 m3 ha-1 and 3.1 m, respectively. Conclusion: This study presents a set of preliminary growth and yield models for E. globoidea to project plot-level growth attributes. The models were path invariant and satisfied basic traditional mensurational-statistical growth and yield model assumptions. These models will provide forest growers and managers with important fundamental information about the growth and yield of E. globoidea.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 556
Author(s):  
Mauricio Zapata-Cuartas ◽  
Bronson P. Bullock ◽  
Cristian R. Montes ◽  
Michael B. Kane

Intensive loblolly pine (Pinus taeda L.) plantation management in the southeastern United States includes mid-rotation silvicultural practices (MRSP) like thinning, fertilization, competitive vegetation control, and their combinations. Consistent and well-designed long-term studies considering interactions of MRSP are required to produce accurate projections and evaluate management decisions. Here we use longitudinal data from the regional Mid-Rotation Treatment study established by the Plantation Management Research Cooperative (PMRC) at the University of Georgia across the southeast U.S. to fit and validate a new dynamic model system rooted in theoretical and biological principles. A Weibull pdf was used as a modifier function coupled with the basal area growth model. The growth model system and error projection functions were estimated simultaneously. The new formulation results in a compatible and consistent growth and yield system and provides temporal responses to treatment. The results indicated that the model projections reproduce the observed behavior of stand characteristics. The model has high predictive accuracy (the cross-validation variance explained was 96.2%, 99.7%, and 98.6%; and the prediction root mean square distance was 0.704 m, 19.1 trees ha−1, and 1.03 m2ha−1 for dominant height (DH), trees per hectare (N), and basal area (BA), respectively), and can be used to project the current stand attributes following combinations of MRSP and with different thinning intensities. Simulations across southern physiographic regions allow us to conclude that the most overall ranking of MRSP after thinning is fertilization + competitive vegetation control (Fert + CVC) > fertilization only (Fert) > competitive vegetation control only (CVC), and Fert + CVC show less than additive effect. Because of the model structure, the response to treatment changes with location, age of application, and dominant height growth as indicators of site quality. Therefore, the proposed model adequately represents regional growth conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Thierry E. Besançon ◽  
Ranjit Riar ◽  
Ronnie W. Heiniger ◽  
Randy Weisz ◽  
Wesley J. Everman

Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1) and dicamba (280 g acid equivalent ha−1) applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 810
Author(s):  
Sebastian Palmas ◽  
Paulo C. Moreno ◽  
Wendel P. Cropper ◽  
Alicia Ortega ◽  
Salvador A. Gezan

Reliable information on stand dynamics and development is needed to improve management decisions on mixed forests, and essential tools for this purpose are forest growth and yield (G&Y) models. In this study, stand-level G&Y models were built for cohorts within the natural mixed second-growth Nothofagus-dominated forests in Chile. All currently available (but limited) data, consisting of a series of stratified temporary and permanent plots established in the complete range of this forest type, were used to fit and validate these models. Linear and nonlinear models were considered, where dominant stand age, number of trees, and the proportion of basal area of Nothofagus species resulted in significant predictors to project future values of stand basal area for the different cohorts (with R2 > 0.51 for the validation datasets). Mortality was successfully modeled (R2 = 0.79), based on a small set of permanent plots, using the concept of self-thinning with a proposed model defined by the idea that, as stands get closer to a maximum density, they experience higher levels of mortality. The evaluation of these models indicated that they adequately represent the current understanding of dynamics of basal area and mortality of Nothofagus and companion species in these forests. These are the first models fitted over a large geographical area that consider the dynamics of these mixed forests. It is suggested that the proposed models should constitute the main components of future implementations of G&Y model systems.


2007 ◽  
Vol 22 (4) ◽  
pp. 269-277
Author(s):  
D. Pascual ◽  
D.A. Maguire ◽  
F. Bravo

Abstract Evaluations of response to variable silvicultural treatments play a key role in developing sustainable forest management. To evaluate silvicultural response, a growth and yield model is needed. A comparison between similar species could act as a logical first step toward building a growth and yield model and to test the efficiency of the calibration of an existing ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growth model to a Mediterranean maritime pine (Pinus pinaster Ait. ssp. mesogeensis) growth model. This study aimed at (1) comparing the diameter growth pattern between ponderosa and Mediterranean maritime pine, and (2) assessing the potential of ORGANON for simulating Mediterranean maritime pine growth and yield. The first objective was addressed by fitting a diameter growth equation for Mediterranean maritime pine and comparing it with patterns in ponderosa pine growth represented by the corresponding equation in ORGANON. The second objective was addressed by growing Mediterranean maritime pine as ponderosa pine in ORGANON, conditional on observed diameter growth rates of Mediterranean maritime pine in Spain. The results emphasized the unsuitability of ORGANON for predicting diameter growth of Mediterranean maritime pine in Spain. Mediterranean maritime pine diameter growth depended on basal area in trees with a diameter larger than the subject tree, (BAL) which, in our context is a subrogate of competition from above.


Sign in / Sign up

Export Citation Format

Share Document