scholarly journals Effect of solar radiation on photosynthetic extracellular carbon release and its microbial utilization in alpine and Arctic lakes

2007 ◽  
Vol 48 ◽  
pp. 155-168 ◽  
Author(s):  
M Panzenböck
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanne B. Emerson ◽  
Ruth K. Varner ◽  
Martin Wik ◽  
Donovan H. Parks ◽  
Rebecca B. Neumann ◽  
...  

AbstractNorthern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles—where methanogens were more abundant—than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota.


Space Weather ◽  
2006 ◽  
Vol 4 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Tracy Staedter
Keyword(s):  

2003 ◽  
Vol 107 ◽  
pp. 743-747
Author(s):  
D. R.S. Lean ◽  
SD. Siciliano
Keyword(s):  

2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Sign in / Sign up

Export Citation Format

Share Document