Francisella noatunensis ssp. noatunensis iglC deletion mutant protects adult zebrafish challenged with acute mortality dose of wild-type strain

2017 ◽  
Vol 123 (2) ◽  
pp. 123-140 ◽  
Author(s):  
EO Lampe ◽  
JI Tandberg ◽  
AL Rishovd ◽  
HC Winther-Larsen
2013 ◽  
Vol 81 (9) ◽  
pp. 3472-3478 ◽  
Author(s):  
Haiqing Sheng ◽  
Y. N. Nguyen ◽  
Carolyn J. Hovde ◽  
Vanessa Sperandio

ABSTRACTEnterohemorrhagicEscherichia coli(EHEC) causes hemorrhagic colitis and life-threatening complications. The main reservoirs for EHEC are healthy ruminants. We reported that SdiA senses acyl homoserine lactones (AHLs) in the bovine rumen to activate expression of the glutamate acid resistance (gad) genes priming EHEC's acid resistance before they pass into the acidic abomasum. Conversely, SdiA represses expression of the locus of enterocyte effacement (LEE) genes, whose expression is not required for bacterial survival in the rumen but is necessary for efficient colonization at the rectoanal junction (RAJ) mucosa. Our previous studies show that SdiA-dependent regulation was necessary for efficient EHEC colonization of cattle fed a grain diet. Here, we compared the SdiA role in EHEC colonization of cattle fed a forage hay diet. We detected AHLs in the rumen of cattle fed a hay diet, and these AHLs activatedgadgene expression in an SdiA-dependent manner. The rumen fluid and fecal samples from hay-fed cattle were near neutrality, while the same digesta samples from grain-fed animals were acidic. Cattle fed either grain or hay and challenged with EHEC orally carried the bacteria similarly. EHEC was cleared from the rumen within days and from the RAJ mucosa after approximately one month. In competition trials, where animals were challenged with both wild-type and SdiA deletion mutant bacteria, diet did not affect the outcome that the wild-type strain was better able to persist and colonize. However, the wild-type strain had a greater advantage over the SdiA deletion mutant at the RAJ mucosa among cattle fed the grain diet.


2009 ◽  
Vol 8 (8) ◽  
pp. 1287-1297 ◽  
Author(s):  
Alejandro D. Nusblat ◽  
Sebastián R. Najle ◽  
Mariela L. Tomazic ◽  
Antonio D. Uttaro ◽  
Clara B. Nudel

ABSTRACT The gene coding for a C-5(6) sterol desaturase in Tetrahymena thermophila, DES5A, has been identified by the knockout of the TTHERM_01194720 sequence. Macronucleus transformation was achieved by biolistic bombardment and gene replacement through phenotypic assortment, using paromomycin as the selective agent. A knockout cell line (KO270) showed a phenotype consistent with that of the DES5A deletion mutant. KO270 converted only 6% of the added sterol into the C-5 unsaturated derivative, while the wild type accumulated 10-fold larger amounts under similar conditions. The decreased desaturation activity is specific for the C-5(6) position of lathosterol and cholestanol; other desaturations, namely C-7(8) and C-22(23), were not affected. Analysis by reverse transcription-PCR reveals that DES5A is transcribed both in the presence and absence of cholestanol in wild-type cells, whereas the transcribed gene was not detected in KO270. The growth of KO270 was undistinguishable from that of the wild-type strain. Des5Ap resembles known C-5(6) sterol desaturases, displaying the three typical histidine motifs, four hydrophobic transmembrane regions, and two other highly conserved domains of unknown function. A phylogenetic analysis placed T. thermophila's enzyme and Paramecium orthologues in a cluster together with functionally characterized C-5 sterol desaturases from vertebrates, fungi, and plants, although in a different branch.


2020 ◽  
Author(s):  
Riho Teras ◽  
Hanna Ainelo ◽  
Marge Puhm

<p>Pseudomonas putida rapidly forms a biofilm, after which its biomass usually disperses to half its initial amount. We have observed different biofilm dynamics of P. putida in a complex medium LB and a minimal medium M9+glc+CAA and inquired about the importance of extracellular factors for the formation of P. putida biofilm.</p> <p>The proteinaceous component of LB increases the biomass of P. putida biofilm. Supplementation of M9 with tryptone but not CAA increased the biofilm biomass. Proteinase K treatment of LB medium reduced the biomass of P. putida biofilm. At the same time, growth rate or maximum OD of planktic bacteria in used media did not correlate with biofilm biomass of the same media. Thus, peptides appeared to have a positive effect on the biofilm as an extracellular factor and not as a source of C and N.</p> <p>We replaced tryptone in M9 medium with positively charged poly-L-lysine (MW. 1000-5000 Da), negatively charged poly-L-glutaminic acid (MW. 1500-5500 Da) or neutral poly-LD-alanine (MW. 3000-7000). Poly-lysine and poly-glutamic acid had a slight positive effect on the biomass of P. putida wild type strain PSm biofilm and poly-alanine did not affect the biofilm.</p> <p>We have previously shown that overexpression of fis in P. putida strain F15 increases biofilm biomass by increasing the lapA expression, the main adhesin gene of biofilm. Using media similar to that used for the wild-type strain for strain F15, we ascertained that only poly-lysine out of these three polypeptides restored the positive effect of fis-overexpression on the biofilm biomass. At the same time, the positive impact of fis-overexpression was absent in lapA deletion mutant strain, but not in lapF deletion mutant strain.</p> <p>In conclusion, the formation of P. putida biofilm depends on polypeptides in the environment. The enhancing effect of positively charged polypeptides appears to be evident in the presence of LapA, a key factor for P. putida biofilm.</p>


2004 ◽  
Vol 379 (3) ◽  
pp. 609-615 ◽  
Author(s):  
Daniel CLARK ◽  
Roger S. ROWLETT ◽  
John R. COLEMAN ◽  
Daniel F. KLESSIG

In recent years, members of the β class of CAs (carbonic anhydrases) have been shown to complement ΔNCE103, a yeast strain unable to grow under aerobic conditions. The activity required for complementation of ΔNCE103 by tobacco chloroplast CA was studied by site-directed mutagenesis. E196A (Glu196→Ala), a mutated tobacco CA with low levels of CA activity, complemented ΔNCE103. To determine whether restoration of ΔNCE103 was due to residual levels of CA activity or whether it was related to previously proposed antioxidant activity of CAs [Götz, Gnann and Zimmermann (1999) Yeast 15, 855–864], additional complementation analysis was performed using human CAII, an α CA structurally unrelated to the β class of CAs to which the tobacco protein belongs. Human CAII complemented ΔNCE103, strongly arguing that CA activity is responsible for the complementation of ΔNCE103. Consistent with this conclusion, recombinant NCE103 synthesized in Escherichia coli shows CA activity, and ΔNCE103 expressing the tobacco chloroplast CA exhibits the same sensitivity to H2O2 as the wild-type strain.


2000 ◽  
Vol 68 (6) ◽  
pp. 3608-3619 ◽  
Author(s):  
Carmen M. Fernandez-Prada ◽  
David L. Hoover ◽  
Ben D. Tall ◽  
Antoinette B. Hartman ◽  
June Kopelowitz ◽  
...  

ABSTRACT The behavior of Shigella flexneri ipaH mutants was studied in human monocyte-derived macrophages (HMDM), in 1-day-old human monocytes, and in J774 mouse macrophage cell line. In HMDM, strain pWR700, an ipaH 7.8 deletion mutant ofS. flexneri 2a strain 2457T, behaved like the wild-type strain 2457T. This strain caused rapid host cell death by oncosis, and few bacterial CFU were recovered after incubation in the presence of gentamicin as previously described for 2457T-infected HMDM. However, analysis of bacterial compartmentalization within endocytic vacuoles with gentamicin and chloroquine indicated that more pWR700 than 2457T was present within the endocytic vacuoles of HMDM, suggesting thatipaH 7.8 deletion mutant transited more slowly from the vacuoles to the cytoplasm. In contrast to findings with HMDM, CFU recovered from pWR700-infected mouse J774 cells were 2 to 3 logs higher than CFU from 2457T-infected J774 cells. These values exceeded CFU recovered after infection of J774 cells with plasmid-cured avirulent strain M4243A1. Incubation with gentamicin and chloroquine clearly showed that pWR700 within J774 cells was mostly present within the endocytic vacuoles. This distribution pattern was similar to that seen with M4243A1 and contrasted with the pattern seen with 2457T. Complementation of pWR700 with a recombinant clone expressingipaH 7.8 restored the intracellular distribution of bacteria to that seen with the wild-type strain. Strains with deletions in ipaH 4.5 oripaH 9.8, however, behaved like 2457T in both HMDM and J774 cells. The distribution profile of pWR700 in 1-day-old monocytes was similar to that seen in J774 cells. Like infected J774 cells, 1-day-old human monocytes demonstrated apoptosis upon infection with virulent Shigella. These results suggest that a role of the ipaH 7.8 gene product is to facilitate the escape of the virulent bacteria from the phagocytic vacuole of monocytes and macrophages.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiangxiang Zhang ◽  
Shulin Cao ◽  
Wei Li ◽  
Haiyan Sun ◽  
Yuanyu Deng ◽  
...  

Ca2 +/calmodulin-dependent phosphatase calcineurin is one of the important regulators of intracellular calcium homeostasis and has been investigated extensively in Saccharomyces cerevisiae. However, only a few reports have explored the function of the Crz1 homolog in filamentous fungi, especially in Fusarium graminearum. In this study, we identified Fg01341 as a potential ortholog of yeast Crz1. Fg01341 could interact with calcineurin and initiate nuclear transport in a calcineurin-dependent manner. The ΔFg01341 mutant exhibited normal hyphal growth on basic medium and conidia formation, but sexual reproduction was partially blocked. Pathogenicity assays showed that the virulence of the ΔFg01341 mutant in flowering wheat heads and corn silks dramatically decreased and was thus consistent with the reduction in deoxynivalenol production. Unexpectedly, the sensitivity to osmotic stress of the deletion mutant and that of the wild-type strain did not present any differences. The deletion mutant showed higher sensitivity to tebuconazole than the wild-type strain. Results also showed that the transcription factor Fg01350 might be the calcineurin target and was independent of Crz1. Furthermore, ΔFg01350 showed defects in hyphal growth, sexual production, virulence, and deoxynivalenol production. Collectively, the results indicate that these two proteins functionally redundant and that the calcineurin–Crz1-independent pathway is particularly important in F. graminearum.


2001 ◽  
Vol 45 (12) ◽  
pp. 3574-3579 ◽  
Author(s):  
Brandie M. Jonas ◽  
Barbara E. Murray ◽  
George M. Weinstock

ABSTRACT We hypothesized that multidrug resistance efflux pumps (MDRs) may be contributing to the drug resistance of enterococci. We recently identified potential MDR-encoding genes in the Enterococcus faecalis V583 genome. Among the putative MDRs, we found a gene that encodes a NorA homolog and have characterized this enterococcal MDR in the present study. A mutant from which the enterococcal NorA homolog has been deleted has reduced resistance to several NorA substrates. Complementation of the deletion mutant with the wild-type gene verified the involvement of this enterococcal gene in resistance to ethidium bromide (EtBr) and norfloxacin. Known MDR inhibitors (reserpine, lansoprazole, and verapamil) inhibit the efflux of EtBr and norfloxacin in wild-type strain OG1RF. A fluorescence assay with EtBr allowed us to quantitate the efflux capability of the enterococcal NorA pump. On the basis of these results, we have named this enterococcal gene emeA (enterococcal multidrug resistance efflux).


2015 ◽  
Vol 25 (4) ◽  
pp. 284-291
Author(s):  
Fanjie Chen ◽  
Han Hu ◽  
Zhonghua Li ◽  
Jiacheng Huang ◽  
Xuwang Cai ◽  
...  

Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a <i>Haemophilus parasuis</i> gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of <i>H. parasuis</i> JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to <i>H. parasuis</i> resistance to CB.


2017 ◽  
Author(s):  
William D. Leavitt ◽  
Sean Jean-Loup Murphy ◽  
Lee R. Lynd ◽  
Alexander S. Bradley

AbstractThe 2H/1H ratio in microbial fatty acids can record information about the energy metabolism of microbes and about the isotopic composition of environmental water. However, the mechanisms involved in the fractionation of hydrogen isotopes between water and lipid are not fully resolved. We provide data aimed at understanding this fractionation in the Gram-positive obligately thermophilic anaerobe, Thermoanaerobacterium saccharolyticum, by comparing a wild-type strain to a deletion mutant in which the nfnAB genes encoding electron-bifurcating transhydrogenase have been removed. The wild-type strain showed faster growth rates and larger overall fractionation than the mutant strain . The overall trend in growth rate and fractionation, along with the isotopic ordering of individual lipids, is consistent with results reported for the Gram-negative sulfate reducer, Desulfovibrio alaskensis G20.


2009 ◽  
Vol 55 (7) ◽  
pp. 841-848 ◽  
Author(s):  
Yuanyuan Wu ◽  
Weiwei Chen ◽  
Ye Zhao ◽  
Hong Xu ◽  
Yuejin Hua

Deinococcus radiodurans (ex Raj et al. 1960) Brooks and Murray 1981 is well known for its efficient repair of various types of physically or chemically induced DNA damage caused by ionizing and ultraviolet radiation or H2O2. RecG codes for a helicase that is known to be involved in repairing oxidative damage in other bacterium. In this work, we constructed a DRrecG deletion mutant and investigated its possible role in H2O2-induced damage. The results showed that the deletion of DRrecG resulted in an obvious growth defect and great decrease of radioresistance of D. radiodurans to gamma radiation and H2O2. We also defined the transcriptional profiles of the recG mutant and wild-type strain with and without treatment with H2O2. These results suggested that DRrecG is important for DNA repair during oxidative damage.


Sign in / Sign up

Export Citation Format

Share Document