scholarly journals Climate-change impacts and fisheries management challenges in the North Atlantic Ocean

2020 ◽  
Vol 648 ◽  
pp. 1-17
Author(s):  
A Bryndum-Buchholz ◽  
DG Boyce ◽  
DP Tittensor ◽  
V Christensen ◽  
D Bianchi ◽  
...  

Climate-induced changes in the world’s oceans will have implications for fisheries productivity and management. Using a model ensemble from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), we analyzed future trajectories of climate-change impacts on marine animal biomass and associated environmental drivers across the North Atlantic Ocean and within the Northwest Atlantic Fisheries Organization (NAFO) convention area and evaluated potential consequences for fisheries productivity and management. Our ensemble results showed that the magnitude of projected biomass changes increased over time and from a low (RCP2.6) to high (RCP8.5) emissions scenario. Within individual NAFO divisions, however, projected biomass changes differed in the magnitude and sometimes direction of change between near (the 2030s) and far future (the 2090s) and contrasting emissions scenarios. By the 2090s, most NAFO divisions with historically (1990-1999) high fisheries landings were projected to experience biomass decreases of 5-40%, while Arctic and subarctic divisions with lower historical landings were projected to experience biomass increases between 20 and 70% under RCP8.5. Future trajectories of sea surface temperature and primary production corroborated that the far-future, high-emissions scenario poses the greatest risk to marine ecosystems and the greatest challenges to fisheries management. Our study summarizes future trends of marine animal biomass and underlying uncertainties related to model projections under contrasting climate-change scenarios. Understanding such climate-change impacts on marine ecosystems is imperative for ensuring that marine fisheries remain productive and sustainable in a changing ocean.

Author(s):  
Harry J Dowsett ◽  
Mark A Chandler ◽  
Marci M Robinson

The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO 2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.


2021 ◽  
Vol 9 ◽  
Author(s):  
Frank S. Gilliam

Tropical storms and hurricanes (collectively hereafter, tropical cyclones) are among the most destructive forces in nature. These threats are of particular concern to human populations and ecosystems of coastal areas of the southeastern United States, most especially in the State of Florida. This review begins with an overview of the effects of tropical cyclones on Florida’s most conspicuous terrestrial ecosystem—longleaf pine. Environmental factors leading to tropical cyclogenesis will also be reviewed, with a specific focus on (1) landfall history in Florida, and (2) the potential relationship between climate change and the frequency/intensity of tropical cyclones in the North Atlantic Ocean. Given its geographical distribution, it is not surprising that longleaf pine has long been impacted by tropical cyclones of the North Atlantic. Tropical cyclones are formed from a complex combination of meteorological conditions, driven initially by the release of excess heat from the surface waters of the ocean, along with an unstable atmosphere comprising air temperatures decreasing and wind speeds increasing with altitude. Among the coastal counties from Texas to Maine, those of Florida have experienced by far the highest frequency of tropical cyclones, especially the southern tip of peninsular Florida, with its most populous county (Miami-Dade) receiving 25 hits from 1900 to 2010, second only to Monroe County (32 hits) during that period. Frequencies of all categories of cyclones have increased significantly from 1850 to the present. Cyclone frequencies were significantly correlated with increases in air and ocean temperatures, both of which have increased over the past, suggesting a causal relationship with anthropogenic climate change. Of future concern is how increases in frequencies and intensities of tropical cyclones will negatively affect the structure and function of these ecologically and economically important longleaf pine ecosystems.


2020 ◽  
Vol 26 (3) ◽  
pp. 1319-1337
Author(s):  
Maxime Olmos ◽  
Mark R. Payne ◽  
Marie Nevoux ◽  
Etienne Prévost ◽  
Gérald Chaput ◽  
...  

2015 ◽  
Vol 15 (5) ◽  
pp. 2445-2461 ◽  
Author(s):  
G. Mioche ◽  
O. Jourdan ◽  
M. Ceccaldi ◽  
J. Delanoë

Abstract. The Arctic region is known to be very sensitive to climate change. Clouds and in particular mixed-phase clouds (MPCs) remain one of the greatest sources of uncertainties in the modelling of the Arctic response to climate change due to an inaccurate representation of their variability and their quantification. In this study, we present a characterisation of the vertical, spatial and seasonal variability of Arctic clouds and MPCs over the entire Arctic region based on satellite active remote sensing observations. MPC properties in the region of the Svalbard archipelago (78° N, 15° E) are also investigated. The occurrence frequency of clouds and MPCs are determined from CALIPSO/CLOUDSAT measurements processed with the DARDAR retrieval algorithm, which allow for a reliable cloud thermodynamic phase classification (warm liquid, supercooled liquid, ice, mixing of ice and supercooled liquid). Significant differences are observed between MPC properties over the entire Arctic region and over the Svalbard region. Results show that MPCs are encountered all year long, with a minimum occurrence of 30% in winter and 50% during the rest of the year on average over the entire Arctic. Over the Svalbard region, MPC occurrence is more constant with time with larger values (55%) compared to the average observed in the Arctic. MPCs are especially located at low altitudes, below 3000 m, where their frequency of occurrence reaches 90%, particularly during winter, spring and autumn. Moreover, results highlight that MPCs are statistically more frequent above open sea than land or sea ice. The temporal and spatial distribution of MPCs over the Svalbard region seems to be linked to the supply of moister air and warmer water from the North Atlantic Ocean, which contribute to the initiation of the liquid water phase. Over the whole Arctic, and particularly in western regions, the increase of MPC occurrence from spring to autumn could be connected to the sea ice melting. During this period, the open water transports some of the warm water from the North Atlantic Ocean to the rest of the Arctic region. This facilitates the vertical transfer of moisture and thus the persistence of the liquid phase. Particular attention is also paid to the measurement uncertainties and how they could affect our conclusions.


2006 ◽  
Vol 14 (3) ◽  
pp. 187-216 ◽  
Author(s):  
Mark L Mallory

The northern fulmar Fulmarus glacialis is a ubiquitous seabird found across the North Atlantic Ocean and into the Canadian Arctic. However, we know little of its ecology in the Arctic, which is unfortunate, because it possesses many traits that make it an excellent biomonitor of the condition of Arctic marine environments. Presently, Arctic fulmars face threats from harvest, bycatch in fisheries, and fouling in oil spills while the birds are in their winter range (the North Atlantic). However, during breeding, migration, and overwintering, they may also experience stress from ecotourism, contaminants, particulate garbage, and climate change. In this paper I review the effects of all of these threats on fulmars and I describe how the ecology of these birds makes them particularly suitable for tracking contaminants, garbage, and the effects of climate change in the Arctic marine ecosystem. I also highlight our key existing knowledge gaps on this species and how additional research will strengthen the utility of fulmars as biomonitors. Key words: northern fulmar, Fulmarus glacialis, Arctic, contaminants, climate change, pollution.


Sign in / Sign up

Export Citation Format

Share Document