scholarly journals Impacts of Tropical Cyclones on Longleaf Pine Ecosystems of Florida: Tropical Cyclogenesis, Landfall Frequencies, and Climate Change

2021 ◽  
Vol 9 ◽  
Author(s):  
Frank S. Gilliam

Tropical storms and hurricanes (collectively hereafter, tropical cyclones) are among the most destructive forces in nature. These threats are of particular concern to human populations and ecosystems of coastal areas of the southeastern United States, most especially in the State of Florida. This review begins with an overview of the effects of tropical cyclones on Florida’s most conspicuous terrestrial ecosystem—longleaf pine. Environmental factors leading to tropical cyclogenesis will also be reviewed, with a specific focus on (1) landfall history in Florida, and (2) the potential relationship between climate change and the frequency/intensity of tropical cyclones in the North Atlantic Ocean. Given its geographical distribution, it is not surprising that longleaf pine has long been impacted by tropical cyclones of the North Atlantic. Tropical cyclones are formed from a complex combination of meteorological conditions, driven initially by the release of excess heat from the surface waters of the ocean, along with an unstable atmosphere comprising air temperatures decreasing and wind speeds increasing with altitude. Among the coastal counties from Texas to Maine, those of Florida have experienced by far the highest frequency of tropical cyclones, especially the southern tip of peninsular Florida, with its most populous county (Miami-Dade) receiving 25 hits from 1900 to 2010, second only to Monroe County (32 hits) during that period. Frequencies of all categories of cyclones have increased significantly from 1850 to the present. Cyclone frequencies were significantly correlated with increases in air and ocean temperatures, both of which have increased over the past, suggesting a causal relationship with anthropogenic climate change. Of future concern is how increases in frequencies and intensities of tropical cyclones will negatively affect the structure and function of these ecologically and economically important longleaf pine ecosystems.

2017 ◽  
Vol 145 (4) ◽  
pp. 1295-1313 ◽  
Author(s):  
Michael S. Fischer ◽  
Brian H. Tang ◽  
Kristen L. Corbosiero

Abstract The role of upper-tropospheric troughs on the intensification rate of newly formed tropical cyclones (TCs) is analyzed. This study focuses on TCs forming in the presence of upper-tropospheric troughs in the North Atlantic basin between 1980 and 2014. TCs were binned into three groups based upon the 24-h intensification rate starting at the time of genesis: rapid TC genesis (RTCG), slow TC genesis (STCG), and neutral TC genesis (NTCG). Composite analysis shows RTCG events are characterized by amplified upper-tropospheric flow with the largest upshear displacement between the TC and trough of the three groups. RTCG events are associated with greater quasigeostrophic (QG) ascent in upshear quadrants of the TC, forced by differential vorticity advection by the thermal wind, especially around the time of genesis. This pattern of QG ascent closely matches the RTCG composite of infrared brightness temperatures. Conversely, NTCG events are associated with an upper-tropospheric trough that is closest to the TC center. The distribution of QG ascent in NTCG events becomes increasingly asymmetric around the time of genesis, with a maximum that shifts downshear of the TC center, consistent with infrared brightness temperatures. It is hypothesized that the TC intensification rate after tropical cyclogenesis, in environments of upper-tropospheric troughs, is closely linked to the structure and temporal evolution of the upper-level trough. The TC–trough configurations that provide greater QG ascent to the left of, and upshear of, the TC center feature more symmetric convection and faster TC intensification rates.


Author(s):  
Harry J Dowsett ◽  
Mark A Chandler ◽  
Marci M Robinson

The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO 2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.


2020 ◽  
Author(s):  
Suzana Camargo ◽  
Chia-Ying Lee ◽  
Adam Sobel ◽  
Michael Tippett

<p>Here I will describe recent results on the influence of climate change on tropical cyclones (TC) using the Columbia Hazard (CHAZ) model. Using environmental conditions from reanalysis and climate models and a statistical-dynamical downscaling methodology (Lee et al. 2018), CHAZ generates synthetic TCs that can be used to analyze TC risk.  I will first discuss the current knowledge and uncertainties in TC frequency projections. Then I will present our recent projections on TC frequency using CHAZ. Focusing on the North Atlantic, I will finish by discussing how we can use a combination of observations, high-resolution models and CHAZ synthetic TCs in the historical period to inform the reliability of the models' TC frequency projections. </p><p>Reference:</p><p>Lee, C.-Y., M.K. Tippett, A.H. Sobel, and S.J. Camargo, 2018. An environmentally forced tropical cyclone hazard model. J. Adv. Model. Earth Sys., 10, doi: 10.1002/2017MS001186.</p>


2020 ◽  
Vol 648 ◽  
pp. 1-17
Author(s):  
A Bryndum-Buchholz ◽  
DG Boyce ◽  
DP Tittensor ◽  
V Christensen ◽  
D Bianchi ◽  
...  

Climate-induced changes in the world’s oceans will have implications for fisheries productivity and management. Using a model ensemble from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), we analyzed future trajectories of climate-change impacts on marine animal biomass and associated environmental drivers across the North Atlantic Ocean and within the Northwest Atlantic Fisheries Organization (NAFO) convention area and evaluated potential consequences for fisheries productivity and management. Our ensemble results showed that the magnitude of projected biomass changes increased over time and from a low (RCP2.6) to high (RCP8.5) emissions scenario. Within individual NAFO divisions, however, projected biomass changes differed in the magnitude and sometimes direction of change between near (the 2030s) and far future (the 2090s) and contrasting emissions scenarios. By the 2090s, most NAFO divisions with historically (1990-1999) high fisheries landings were projected to experience biomass decreases of 5-40%, while Arctic and subarctic divisions with lower historical landings were projected to experience biomass increases between 20 and 70% under RCP8.5. Future trajectories of sea surface temperature and primary production corroborated that the far-future, high-emissions scenario poses the greatest risk to marine ecosystems and the greatest challenges to fisheries management. Our study summarizes future trends of marine animal biomass and underlying uncertainties related to model projections under contrasting climate-change scenarios. Understanding such climate-change impacts on marine ecosystems is imperative for ensuring that marine fisheries remain productive and sustainable in a changing ocean.


Sign in / Sign up

Export Citation Format

Share Document