Gene flow across a major biogeographic barrier is not increasing under climate change for the barnacle Catomerus polymerus

Author(s):  
DJ Ayre ◽  
N Rosser
2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dong Won Jeon ◽  
Jae-Ryoung Park ◽  
Yoon-Hee Jang ◽  
Eun-Gyeong Kim ◽  
Taehun Ryu ◽  
...  

Abstract Background The drought environment occurs frequently due to the unpredictable future climate change, and drought has a direct negative impact on crops, such as yield reduction. Drought events are random, frequent, and persistent. Molecular breeding can be used to create drought-tolerant food crops, but the safety of genetically modified (GM) plants must be demonstrated before they can be adopted. In this research, the environmental risk of drought-tolerant GM rice was explored by assessing phenotype and gene flow. Drought resistance genes CaMsrB2 inserted HV8 and HV23 were used as GM rice to analyze the possibility of various agricultural traits and gene flow along with non-GM rice. Results When the traits 1000-grain weight, grain length/width, and yield, were compared with GM rice and non-GM rice, all agricultural traits of GM rice and non-GM rice were the same. In addition, when the germination rate, viviparous germination rate, pulling strength, and bending strength were compared to analyze the possibility of weediness, all characteristic values of GM rice and non-GM rice were the same. Protein, amylose, and moisture, the major nutritional elements of rice, were also the same. Conclusions The results of this research are that GM rice and non-GM rice were the same in all major agricultural traits except for the newly assigned characteristics, and no gene mobility occurred. Therefore, GM rice can be used as a means to solve the food problem in response to the unpredictable era of climate change in the future.


2018 ◽  
Vol 5 (6) ◽  
pp. 180736
Author(s):  
Ben J. Evans ◽  
Anthony J. Tosi ◽  
Kai Zeng ◽  
Jonathan Dushoff ◽  
André Corvelo ◽  
...  

2018 ◽  
Vol 45 (4) ◽  
pp. 396-406 ◽  
Author(s):  
PAUL M. RADLEY ◽  
ROBERT A. DAVIS ◽  
RENÉ W.R.J. DEKKER ◽  
SHAUN W. MOLLOY ◽  
DAVID BLAKE ◽  
...  

SUMMARYAspects of species life histories may increase their susceptibility to climate change. Owing to their exclusive reliance on environmental sources of heat for incubation, megapodes may be especially vulnerable. We employed a trait-based vulnerability assessment to weigh their exposure to projected climate variables of increasing temperatures, fluctuating rainfall and sea level rise and their biological sensitivity and capacity to adapt. While all 21 species were predicted to experience at least a 2 °C increase in mean annual temperature, 12 to experience a moderate or greater fluctuation in rainfall and 16 to experience rising seas, the most vulnerable megapodes are intrinsically rare and range restricted. Species that employ microbial decomposition for incubation may have an adaptive advantage over those that do not and may be more resilient to climate change. The moderate microclimate necessary for mound incubation, however, may in some areas be threatened by anthropogenic habitat loss exacerbated by warmer and seasonally drier conditions. As with many avian species, little is known about the capacity of megapodes to adapt to a changing climate. We therefore recommend that future research efforts investigate megapode fecundity, gene flow and genetic connectivity at the population level to better determine their adaptive capacity.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6572 ◽  
Author(s):  
Victoria Sosa ◽  
Israel Loera ◽  
Diego F. Angulo ◽  
Marilyn Vásquez-Cruz ◽  
Etelvina Gándara

Background Deserts are biologically rich habitats with a vast array of animals and plants adapted to xeric conditions, and most deserts are among the planet’s last remaining areas of total wilderness. Among North American deserts, the Chihuahuan Desert has the highest levels of diversity and endemism. To understand the effect of future climate change on plants distributed in this arid land and propose effective conservation planning, we focused on five endemic shrubby species that characterize the Chihuahuan Desert and used an integrative approach. Methods Ecological niche-based modeling, spatial genetics and ecological resistance analyses were carried out to identify the effect of global warming on the studied five shrubby species. Key areas that need to be preserved were identified taking into account the existing protected areas within the Chihuahuan Desert. Results The extent of future distribution will vary among these species, and on average expansion will occur in the western part of the Chihuahuan Desert. For most species low environmental resistance to gene flow was predicted, while higher future resistance was predicted for one species that would lead to increased population isolation. The highest haplotype diversity was identified in three hotspots. Based on future suitability of habitat and in the haplotype diversity we suggest preserving two hotspots of genetic diversity in the Sierra Madre Oriental, located in areas without protection. The third hotspot was detected in the well preserved Tehuacán-Cuicatlán Man and Biosphere Reserve. Conclusion Global climate change will have an effect in arid adapted plants, favoring expansion in the western of the Chihuahuan Desert however negatively affecting others with high ecological resistance disrupting gene flow. Two hotspots of genetic diversity in the Sierra Madre Oriental should be protected.


2021 ◽  
Author(s):  
Luke Thomas ◽  
Jim Underwood ◽  
Noah H Rose ◽  
Zach L Fuller ◽  
Laurence Dugal ◽  
...  

Understanding the mechanisms driving phenotypic variation in traits facing intensified selection from climate change is a crucial step in developing effective conservation and restoration initiatives. This is particularly true for reef-building corals, which are among the most vulnerable to climate change and are in dramatic decline globally. At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterising the mechanisms that control phenotypic responses to different environments. We combined whole genome re-sequencing, common garden heat stress experiments, transcriptome-wide gene expression analyses, and symbiont metabarcoding to explore the mechanisms that facilitate survival in contrasting habitat conditions. Our data show that, despite high gene flow between habitats, spatially varying selection drives subtle shifts in allele frequencies at hundreds of loci. These changes were concentrated into several islands of divergence spanning hundreds of SNPs that showed strong linkage disequilibrium and were associated with a coordinated increase in minor allele frequencies in corals taken from the lagoon habitat, where the range of environmental conditions is greatest. Common garden heat stress assays showed individuals from the lagoon exhibited higher bleaching resistance than colonies from the reef slope, and RNAseq identified pronounced physiological differences between the corals from the two habitats, primarily associated with molecular pathways including cell signalling, ion transport and metabolism. Despite the pronounced physioloigical and environmental differences between habitats, metabarcoding of the Symbiodiniaceae ITS2 region revealed all colonies to be associated exclusively with the genus Cladocopium, with no detectable differences between habitats. This study contributes to the growing number of studies documenting the complex mechanisms that facilitate coral survival in extreme environments, and showcases the utility of combining multiple sequencing techniques to unravel complex climate-related traits.


2019 ◽  
Author(s):  
M-A. Fustier ◽  
N.E. Martínez-Ainsworth ◽  
A. Venon ◽  
H. Corti ◽  
A. Rousselet ◽  
...  

AbstractLocal adaptation across species range is widespread. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Because elevation gradients display continuous environmental changes at a short geographical scale, they provide an exceptional opportunity to investigate these questions. Here, we used two common gardens to phenotype 1664 plants from 11 populations of annual teosintes. These populations were sampled across two elevation gradients in Mexico. Our results point to a syndrome of adaptation to altitude with the production of offspring that flowered earlier, produced less tillers, and larger, longer and heavier grains with increasing elevation. We genotyped these plants for 178 outlier single nucleotide polymorphisms (SNPs), which had been chosen because they displayed excess of allele differentiation and/or correlation with environmental variables in six populations with contrasted altitudes. A high proportion of outlier SNPs associated with the phenotypic variation of at least one trait. We tested phenotypic pairwise correlations between traits, and found that the higher the correlation, the greater the number of common associated SNPs. In addition, allele frequencies at 87 of the outlier SNPs correlated with an environmental component best summarized by altitudinal variation on a broad sample of 28 populations. Chromosomal inversions were enriched for both phenotypically-associated and environmentally-correlated SNPs. Altogether, our results are consistent with the set-up of an altitudinal syndrome promoted by local adaptation of teosinte populations in the face of gene flow. We showed that pleiotropy is pervasive and potentially has constrained the evolution of traits. Finally, we recovered variants underlying phenotypic variation at adaptive traits. Because elevation mimics climate change through space, these variants may be relevant for future maize breeding.Author summaryAcross their native range, species encounter a diversity of habitats promoting local adaptation of geographically distributed populations. While local adaptation is widespread, much has yet to be discovered about the conditions of its emergence, the targeted traits, their molecular determinants and the underlying ecological drivers. Here we employed a reverse ecology approach, combining phenotypes and genotypes, to mine the determinants of local adaptation of teosinte populations distributed along two steep altitudinal gradients in Mexico. Evaluation of 11 populations in two common gardens located at mid-elevation pointed to the set-up of an altitudinal syndrome, in spite of gene flow. We scanned genomes to identify loci with allele frequencies shifts along elevation. Interestingly, variation at these loci was commonly associated to variation of phenotypes. Because elevation mimics climate change through space, these variants may be relevant for future maize breeding.


2016 ◽  
Vol 22 (4) ◽  
pp. 1572-1584 ◽  
Author(s):  
Donelle Schwalm ◽  
Clinton W. Epps ◽  
Thomas J. Rodhouse ◽  
William B. Monahan ◽  
Jessica A. Castillo ◽  
...  

2006 ◽  
Vol 273 (1598) ◽  
pp. 2201-2208 ◽  
Author(s):  
H.A Lessios ◽  
D.R Robertson

The ‘impassable’ Eastern Pacific Barrier (EPB), ca 5000 km of deep water separating the eastern from the central Pacific, is the World's widest marine biogeographic barrier. Sequencing of mitochondrial DNA in 20 reef fish morphospecies encountered on both sides of the barrier revealed cryptic speciation in two. Among the other 18 species only two showed significant differentiation (as revealed by haplotype networks and F ST statistics) between the eastern and the central Pacific. Coalescence analyses indicated that genetic similarity in the 18 truly transpacific species resulted from different combinations of ages of most recent invasion and of levels of recurrent gene flow, with estimated times of initial separation ranging from approximately 30 000 to 1 Myr (ago). There is no suggestion of simultaneous interruptions of gene flow among the species. Migration across the EPB was previously thought to be exclusively eastward, but our evidence showed two invasions from east to west and eight cases in which subsequent gene flow possibly proceeded in the same direction. Thus, the EPB is sporadically permeable to propagules originating on either side.


2019 ◽  
Author(s):  
James S. Borrell ◽  
Jasmin Zohren ◽  
Richard A. Nichols ◽  
Richard J. A. Buggs

AbstractWhen populations of a rare species are small, isolated and declining under climate change, some populations may become locally maladapted. Detecting this maladaptation may allow effective rapid conservation interventions, even if based on incomplete knowledge. Population maladaptation may be estimated by finding genome-environment associations (GEA) between allele frequencies and environmental variables across a local species range, and identifying populations whose allele frequencies do not fit with these trends. We can then design assisted gene flow strategies for maladapted populations, to adjust their allele frequencies, entailing lower levels of intervention than with undirected conservation action. Here, we investigate this strategy in Scottish populations of the montane plant dwarf birch (Betula nana). In genome-wide single nucleotide polymorphism (SNP) data we found 267 significant associations between SNP loci and environmental variables. We ranked populations by maladaptation estimated using allele frequency deviation from the general trends at these loci; this gave a different prioritization for conservation action than the Shapely Index, which seeks to preserve rare neutral variation. Populations estimated to be maladapted in their allele frequencies at loci associated with annual mean temperature were found to have reduced catkin production. Using an environmental niche modelling (ENM) approach, we found annual mean temperature (35%), and mean diurnal range (15%), to be important predictors of the dwarf birch distribution. Intriguingly, there was a significant correlation between the number of loci associated with each environmental variable in the GEA, and the importance of that variable in the ENM. Together, these results suggest that the same environmental variables determine both adaptive genetic variation and species range in Scottish dwarf birch. We suggest an assisted gene flow strategy that aims to maximize the local adaptation of dwarf birch populations under climate change by matching allele frequencies to current and future environments.


Sign in / Sign up

Export Citation Format

Share Document