scholarly journals Dengue epidemic: Homoeopathic approach

2021 ◽  
Vol 5 (4) ◽  
pp. 393-397
Author(s):  
Dr. Siddabathina Uma Devi ◽  
Dr. Sohera Talat ◽  
Dr. Hulekar
Keyword(s):  
2020 ◽  
Vol 101 ◽  
pp. 270-271
Author(s):  
P. Goel ◽  
M.M. Singh ◽  
A.L. Borle ◽  
S. Garg

Author(s):  
Tsheten Tsheten ◽  
Angus Mclure ◽  
Archie C. A. Clements ◽  
Darren J. Gray ◽  
Tenzin Wangdi ◽  
...  

Bhutan experienced its largest and first nation-wide dengue epidemic in 2019. The cases in 2019 were greater than the total number of cases in all the previous years. This study aimed to characterize the spatiotemporal patterns and effective reproduction number of this explosive epidemic. Weekly notified dengue cases were extracted from the National Early Warning, Alert, Response and Surveillance (NEWARS) database to describe the spatial and temporal patterns of the epidemic. The time-varying, temperature-adjusted cohort effective reproduction number was estimated over the course of the epidemic. The dengue epidemic occurred between 29 April and 8 December 2019 over 32 weeks, and included 5935 cases. During the epidemic, dengue expanded from six to 44 subdistricts. The effective reproduction number was <3 for most of the epidemic period, except for a ≈1 month period of explosive growth, coinciding with the monsoon season and school vacations, when the effective reproduction number peaked >30 and after which the effective reproduction number declined steadily. Interventions were only initiated 6 weeks after the end of the period of explosive growth. This finding highlights the need to reinforce the national preparedness plan for outbreak response, and to enable the early detection of cases and timely response.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Kang Liu ◽  
Ling Yin ◽  
Meng Zhang ◽  
Min Kang ◽  
Ai-Ping Deng ◽  
...  

Abstract Background Dengue fever (DF) is a mosquito-borne infectious disease that has threatened tropical and subtropical regions in recent decades. An early and targeted warning of a dengue epidemic is important for vector control. Current studies have primarily determined weather conditions to be the main factor for dengue forecasting, thereby neglecting that environmental suitability for mosquito breeding is also an important factor, especially in fine-grained intra-urban settings. Considering that street-view images are promising for depicting physical environments, this study proposes a framework for facilitating fine-grained intra-urban dengue forecasting by integrating the urban environments measured from street-view images. Methods The dengue epidemic that occurred in 167 townships of Guangzhou City, China, between 2015 and 2019 was taken as a study case. First, feature vectors of street-view images acquired inside each township were extracted by a pre-trained convolutional neural network, and then aggregated as an environmental feature vector of the township. Thus, townships with similar physical settings would exhibit similar environmental features. Second, the environmental feature vector is combined with commonly used features (e.g., temperature, rainfall, and past case count) as inputs to machine-learning models for weekly dengue forecasting. Results The performance of machine-learning forecasting models (i.e., MLP and SVM) integrated with and without environmental features were compared. This indicates that models integrating environmental features can identify high-risk urban units across the city more precisely than those using common features alone. In addition, the top 30% of high-risk townships predicted by our proposed methods can capture approximately 50–60% of dengue cases across the city. Conclusions Incorporating local environments measured from street view images is effective in facilitating fine-grained intra-urban dengue forecasting, which is beneficial for conducting spatially precise dengue prevention and control.


2018 ◽  
Vol 26 (7) ◽  
Author(s):  
Cheikh Tidiane Diagne ◽  
Mamadou Aliou Barry ◽  
Yamar Ba ◽  
Oumar Faye ◽  
Amadou Alpha Sall
Keyword(s):  
The Usa ◽  

The Grand Magal of Touba is a 2–3 days pilgrimage gathering 3 million people, including 1.5 million residents and 1–2 million pilgrims from other regions in Senegal or from the Senegalese diaspora mostly from the USA, Africa and Europe. With the currently ongoing dengue epidemic in this area, concerns have been raised about the spread of dengue to non-affected areas in Senegal through travellers to and from the Grand Magal.


2018 ◽  
Vol 16 (2) ◽  
pp. 273-278
Author(s):  
Nguyen Thi Kim Lien ◽  
Nguyen Thu Hien ◽  
Nguyen Huy Hoang ◽  
Nguyen Thi Hong Ngoc ◽  
Nguyen Thi Huong Binh

Vietnam is one of the countries that is affected by dengue fever in Southeast Asia. The dengue epidemic is becoming increasingly more complex so it is necessary to have a well control to vectors in order to limit the spread of the disease. The Aedes albopictus mosquito is determined as one of the two major vectors that transmitted the dengue. Recent research shows that A. albopictus is present in some parts of Hanoi and Haiphong. In order to control the vector as well as the disease, it is necessary to understand the level of resistance and the resistance mechanism of the vector. Two important resistance mechanisms of insect were known as the mutations in the target protein of the insecticides and enhancing the activity of enzymes that participate in the resolution of the insecticides. In this study, the mosquito samples were collected from Hanoi and Haiphong to identify the level of resistance and detect the knock down resistance mutations in voltage gated sodium channel (VGSC) in membrane of nervecell of mosquito. The results of insecticide susceptibility test showed that A. albopictus in Hanoi and Haiphong were still sensitive to organophosphate but resistant to DDT, carbamate and pyrethroid. Ser989Pro, Ile1011Met, Val1016Gly and Phe1534Cys mutations were not deteced in A. albopictus in Hanoi and Haiphong. However, we detected a novel mutation Tyr986His in VGSC protein.


Sign in / Sign up

Export Citation Format

Share Document