scholarly journals The Cardiovascular Effects of Central Hydrogen Sulfide Are Related to KATP Channels Activation

2011 ◽  
pp. 729-738 ◽  
Author(s):  
W.-Q. LIU ◽  
C. CHAI ◽  
X.-Y. LI ◽  
W.-J. YUAN ◽  
W.-Z. WANG ◽  
...  

Hydrogen sulfide (H2S), an endogenous “gasotransmitter”, exists in the central nervous system. However, the central cardiovascular effects of endogenous H2S are not fully determined. The present study was designed to investigate the central cardiovascular effects and its possible mechanism in anesthetized rats. Intracerebroventricular (icv) injection of NaHS (0.17~17 μg) produced a significant and dose-dependent decrease in blood pressure (BP) and heart rate (HR) (P<0.05) compared to control. The higher dose of NaHS (17 μg, n=6) decreased BP and HR quickly of rats and 2 of them died of respiratory paralyse. Icv injection of the cystathionine beta-synthetase (CBS) activator s-adenosyl-L-methionine (SAM, 26 μg) also produced a significant hypotension and bradycardia, which were similar to the results of icv injection of NaHS. Furthermore, the hypotension and bradycardia induced by icv NaHS were effectively attenuated by pretreatment with the KATP channel blocker glibenclamide but not with the CBS inhibitor hydroxylamine. The present study suggests that icv injection of NaHS produces hypotension and bradycardia, which is dependent on the KATP channel activation.

Author(s):  
Ada Admin ◽  
Michelle Carey ◽  
Eric Lontchi-Yimagou ◽  
William Mitchell ◽  
Sarah Reda ◽  
...  

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this ‘glucose effectiveness’ is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). ATP-sensitive potassium channels (K<sub>ATP</sub> channels) in the central nervous system (CNS) have been shown to regulate EGP in humans and rodents. We examined the contribution of central K<sub>ATP</sub> channels to glucose effectiveness. Under fixed hormonal conditions (‘pancreatic clamp’ studies), hyperglycemia suppressed EGP by ~50% in both non-diabetic humans and normal Sprague Dawley rats. By contrast, antagonism of K<sub>ATP</sub> channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes in rats were abolished by intracerebroventricular (ICV) administration of the KATP channel agonist diazoxide. These findings indicate that about half of EGP suppression by hyperglycemia is mediated by central K<sub>ATP</sub> channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in T2D.


2016 ◽  
Vol 94 (10) ◽  
pp. 1102-1105 ◽  
Author(s):  
Suzana Branković ◽  
Bojana Miladinović ◽  
Mirjana Radenković ◽  
Marija Gočmanac Ignjatović ◽  
Milica Kostić ◽  
...  

The aim of this study was to evaluate the effects of black currant (Ribes nigrum L. ‘Ben Sarek’) juice on the blood pressure and frequency of cardiac contractions, as well as vasomotor responses of rat aortic rings. Arterial blood pressure was measured directly from the carotid artery in the anaesthetized rabbits. The aortic rings were pre-contracted with KCl (80 mmol·L−1), after which black currant juice was added. An intravenous injection of black currant juice (0.33–166.5 mg·kg−1) induced a significant and dose-dependent decrease of rabbit arterial blood pressure and heart rate. The black currant juice decreased arterial blood pressure of rabbit by 22.33% ± 3.76% (p < 0.05) and heart rate by 17.18% ± 2.93% (p < 0.05). Cumulative addition of the black currant juice (0.01–3 mg·mL−1) inhibited concentration-dependent KCl induced contractions of the isolated rat aorta. The black currant juice, at the concentration of 3 mg·mL−1, caused a maximum relaxation of 21.75% ± 3.15% (p < 0.05). These results demonstrate that black currant juice can induce hypotension. The hypotensive effect of the black currant may occur as the consequence of its inhibitory activity on the rate of heart contraction and vasorelaxant effects.


1990 ◽  
Vol 258 (3) ◽  
pp. E482-E484 ◽  
Author(s):  
E. P. Gomez-Sanchez ◽  
C. M. Fort ◽  
C. E. Gomez-Sanchez

The chronic intracerebroventricular (icv) infusion of aldosterone in rats and dogs elevates the blood pressure within 10-14 days at doses far below those that produce hypertension systemically. The effect in rats is dose dependent and blocked by the concomitant icv infusion of the antimineralocorticoid, prorenone. The effect of the icv infusion of RU28318, another specific spironolactone mineralocorticoid antagonist, on the hypertension produced by chronic subcutaneous (sc) administration of aldosterone in sensitized rats was reported. Miniosmotic pumps were used to deliver 1 micrograms/h aldosterone sc and 1.1 micrograms/h RU8318 icv. Over a 24-day period the indirect systolic blood pressure of the control, RU28318 icv, and aldosterone sc plus RU28318 icv groups increased from 105 to 123 mmHg and were not significantly different from each other, whereas the aldosterone sc group increased to 156 mmHg. RU28318, icv or sc, did not alter the increase in urine volume produced by aldosterone sc, and there was no significant differences in weight between the groups. This study provides evidence of the importance of the central nervous system in the pathogenesis of hypertension produced by systemic mineralocorticoid excess.


1992 ◽  
Vol 263 (5) ◽  
pp. H1532-H1536 ◽  
Author(s):  
J. M. Pinheiro ◽  
A. B. Malik

We studied the potential role of ATP-sensitive potassium (K+ATP) channel activation in mediating pulmonary vasodilation in newborn piglets. Piglet lungs (n = 14, ages 1-4 days) were artificially perfused with recirculating Ringer solution containing bovine serum albumin and statistically inflated using 95% O2-5% CO2. We measured pulmonary arterial pressure (Ppa) and distribution of pulmonary vascular resistance (using double-occlusion method). Under resting conditions (Ppa 13.7 +/- 1.6 cmH2O, mean +/- SE), the K+ATP channel agonist BRL 38227 (lemakalim, 10(-7) and 10(-6) M) caused small dose-dependent pulmonary vasodilation. This response was diminished by the K+ATP-channel blocker glibenclamide (10(-5) M). Pretreatment of lungs with indomethacin (10(-5) M) and N omega-nitro-L-arginine (10(-5) M) to inhibit cyclooxygenase- and nitric oxide (NO)-related vasodilation, respectively, resulted in a marked increase in the baseline Ppa to 85.6 +/- 11.2 cmH2O. Injection of BRL 38227 (10(-7) M and 10(-6) M) in these lungs decreased Ppa to 72.5 +/- 8.5 (P < 0.01) and 19.3 +/- 0.9 cmH2O (P < 0.01), respectively; the corresponding times for half-recovery of Ppa (t1/2R) were 5.7 +/- 4.3 and > 20 min. Glibenclamide (10(-5) M) abolished the response to 10(-7) M BRL 38227 and significantly diminished (P < 0.05) the decreases in Ppa and t1/2R in response to 10(-6) M BRL 38227 but not to acetylcholine (10(-10) M). We conclude that activation of K+ATP channels has a minimal role in maintaining basal pulmonary vasomotor tone but is able to induce marked vasodilation when NO and cyclooxygenase-dependent vasodilatory mechanisms are inhibited.


2003 ◽  
Vol 284 (1) ◽  
pp. H299-H308 ◽  
Author(s):  
Gilles Lebuffe ◽  
Paul T. Schumacker ◽  
Zuo-Hui Shao ◽  
Travis Anderson ◽  
Hirotoro Iwase ◽  
...  

Reactive oxygen species (ROS) and nitric oxide (NO) are implicated in induction of ischemic preconditioning. However, the relationship between these oxidant signals and opening of the mitochondrial ATP-dependent potassium (KATP) channel during early preconditioning is not fully understood. We observed preconditioning protection by hypoxia, exogenous H2O2, or PKC activator PMA in cardiomyocytes subjected to 1-h ischemia and 3-h reperfusion. Protection was abolished by KATP channel blocker 5-hydroxydecanoate (5-HD) in each case, indicating that these triggers must act upstream from the KATP channel. Inhibitors of NO synthase abolished protection in preconditioned cells, suggesting that NO is also required for protection. DAF-2 fluorescence (NO sensitive) increased during hypoxic triggering. This was amplified by pinacidil and inhibited by 5-HD, indicating that NO is generated subsequent to KATP channel activation. Exogenous NO during the triggering phase conferred protection blocked by 5-HD. Exogenous NO also restored protection abolished by 5-HD or N ω-nitro-l-arginine methyl ester in preconditioned cells. Antioxidants given during pinacidil or NO triggering abolished protection, confirming that ROS are generated by KATP channel activation. Coadministration of H2O2 and NO restored PMA-induced protection in 5-HD-treated cells, indicating that ROS and NO are required downstream from the KATP channel. We conclude that ROS can trigger preconditioning by causing activation of the KATP channel, which then induces generation of ROS and NO that are both required for preconditioning protection.


2005 ◽  
Vol 83 (6) ◽  
pp. 509-515 ◽  
Author(s):  
Srinivas Nammi ◽  
Krishna Murthy Boini ◽  
Sushruta Koppula ◽  
Satyanarayana Sreemantula

Reserpine, an alkaloid from Rauwolfia serpentina, was widely used for its antihypertensive action. However, its use has been reduced because of its sedative and extra pyramidal symptoms. In the present investigation, reserpine methiodide (RMI), a quaternary analogue of reserpine, was synthesized and pharmacologically evaluated in rats and mice for its central (barbiturate hypnosis, spontaneous motor activity, body temperature, and avoidance of conditioned response) and peripheral actions (blood pressure) in comparison with reserpine. The results indicate that reserpine produced a dose-dependent depression of the central nervous system. RMI at doses equal to and double the equimolar doses of reserpine did not produce any behavioural changes compared with control animals. Nevertheless, both reserpine and RMI were found to produce dose-dependent reduction in the blood pressure of anaesthetized rats, although only at higher doses of RMI, indicating that quaternization of reserpine not only attenuated the entry of RMI into the central nervous system, but also reduced its access to the target tissue in the periphery. It is speculated that the hypotensive actions of RMI may also be due to peripheral depletion of catecholamines. Key words: resperine methiodide (RMI), reserpine, behaviour, blood pressure, mice, rats.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
José Sérgio Possomato-Vieira ◽  
Victor Hugo Gonçalves-Rizzi ◽  
Regina Aparecida do Nascimento ◽  
Rodrigo Roldão Wandekin ◽  
Mayara Caldeira-Dias ◽  
...  

Lead- (Pb-) induced hypertension has been shown in humans and experimental animals and cardiovascular effects of hydrogen sulfide (H2S) have been reported previously. However, no studies examined involvement of H2S in Pb-induced hypertension. We found increases in diastolic blood pressure and mean blood pressure in Pb-intoxicated humans followed by diminished H2S plasmatic levels. In order to expand our findings, male Wistar rats were divided into four groups: Saline, Pb, NaHS, and Pb + NaHS. Pb-intoxicated animals received intraperitoneally (i.p.) 1st dose of 8 μg/100 g of Pb acetate and subsequent doses of 0.1 μg/100 g for seven days and sodium hydrosulfide- (NaHS-) treated animals received i.p. NaHS injections (50 μmol/kg/twice daily) for seven days. NaHS treatment blunted increases in systolic blood pressure, increased H2S plasmatic levels, and diminished whole-blood lead levels. Treatment with NaHS in Pb-induced hypertension seems to induce a protective role in rat aorta which is dependent on endothelium and seems to promote non-NO-mediated relaxation. Pb-intoxication increased oxidative stress in rats, while treatment with NaHS blunted increases in plasmatic MDA levels and increased antioxidant status of plasma. Therefore, H2S pathway may be involved in Pb-induced hypertension and treatment with NaHS exerts antihypertensive effect, promotes non-NO-mediated relaxation, and decreases oxidative stress in rats with Pb-induced hypertension.


1997 ◽  
Vol 272 (4) ◽  
pp. R1135-R1142 ◽  
Author(s):  
J. C. Callera ◽  
L. G. Bonagamba ◽  
C. Sevoz ◽  
R. Laguzzi ◽  
B. H. Machado

In the present study, we analyzed in conscious rats the effects of microinjections of serotonin (5-HT; pmol range) into the nucleus of the solitary tract (NTS) on basal mean arterial pressure (MAP) and heart rate (HR) and also on the reflex bradycardia induced by the activation of the baro- and chemoreflex evaluated 1 min after 5-HT microinjection into the NTS. The data show that unilateral microinjection of 5-HT in the picomolar range into the NTS of unanesthetized rats produced a dose-dependent decrease in MAP and HR, which was blocked by previous microinjection of ketanserin (250 pmol/50 nl) into the NTS. The changes in MAP and HR induced by 5-HT were of very short duration, with a return to baseline values a few seconds later. The cardiovascular responses to baro- or chemoreflex activation 1 min after 5-HT microinjection into the NTS did not differ from the control, indicating that low doses of 5-HT produced no effect on the cardiovascular reflexes tested at that time. The present data show that, as also observed in anesthetized rats, the microinjection of picomolar doses of 5-HT into the NTS elicits the typical cardiovascular responses to baroreceptor activation. These effects, hypotension and bradycardia, seem to be mediated by 5-HT2 receptors because both were blocked by a selective 5-HT2 receptor antagonist. However, since microinjection of 5-HT (1 pmol) into the NTS produced no changes in the cardiovascular responses to the baro- and chemoreflex activated 1 min later, the role of 5-HT2 receptors in the processing of the cardiovascular afferent messages in the NTS remains to be elucidated.


1998 ◽  
Vol 274 (4) ◽  
pp. H1106-H1112 ◽  
Author(s):  
Ichiro Kouchi ◽  
Tomoyuki Murakami ◽  
Ryuzo Nawada ◽  
Masaharu Akao ◽  
Shigetake Sasayama

Calcium preconditioning (CPC), like ischemic preconditioning (IPC), reduces myocardial infarct size in dogs and rats. ATP-sensitive potassium (KATP) channels induce cardioprotection of IPC in these animals. To determine whether KATP channels mediate both IPC and CPC, pentobarbital sodium-anesthetized rabbits received 30 min of coronary artery occlusion followed by 180 min of reperfusion. IPC was elicited by 5 min of occlusion and 10 min of reperfusion, and CPC was elicited by two cycles of 5 min of calcium infusion with an interval period of 15 min. Infarct size expressed as a percentage of the area at risk was 38 ± 3% (mean ± SE) in controls. IPC, CPC, and pretreatment with a KATP channel opener, cromakalim, all reduced infarct size to 13 ± 2, 17 ± 2, and 12 ± 3%, respectively ( P < 0.01 vs. controls). Glibenclamide, a KATP channel blocker administered 45 min (but not 20 min) before sustained ischemia, attenuated the effects of IPC and CPC (31 ± 4 and 41 ± 6%, respectively). Thus KATP channel activation appears to contribute to these two types of cardioprotection in rabbits.


2008 ◽  
Vol 19 (3) ◽  
pp. 281-287
Author(s):  
Margaret S. Ruggiero

Septic shock continues to be one of the leading causes of death in the intensive care unit today. The confluence of many factors contributes to the deterioration of patients’ condition in septic shock. Increased levels of nitric oxide, in part, mediate the cardiovascular effects of septic shock. Nitric oxide is major mediator of vasodilation and hypotension as well as myocardial depression. It also contributes to decreased production and release of endogenous vasopressin. Vasopressin effects are actualized by stimulation of V1, V2, and V3 receptors located in various parts of the body. The response is dose dependent. Endogenous vasopressin and angiotensin II act synergistically to preserve and restore blood pressure levels. Decreased circulating vasopressin contributes to adrenal insufficiency via hypothalamic-pituitary-adrenal axis suppression and increased catecholamine resistance to vasopressors. Exogenous vasopressin supplementation in physiologic doses has been shown to improve blood pressure levels and decrease vasopressor needs in patients with septic shock.


Sign in / Sign up

Export Citation Format

Share Document