scholarly journals Clover root weevil tolerance of clover cultivars

2016 ◽  
Vol 78 ◽  
pp. 197-202 ◽  
Author(s):  
C.M. Ferguson ◽  
D.M. Barton ◽  
B.A. Philip

Clover root weevil arrived in New Zealand about 20 years ago causing major loss of productivity as it progressively spread across the whole country. It is now largely controlled by an introduced parasitic wasp biocontrol agent Microctonus aethiopoides (Irish ecotype). However, management of insect pests should not rely on a single mechanism and clovers resistant or tolerant to this weevil would be a useful augmentation for farmers to have. This investigation reports on the suitability of 22 clover cultivars to attack from the weevil. Results have shown that contrary to popular belief, red clovers are not universally less favourable to the weevil than white clovers and usefully, within both species cultivar differences point to the possibility of resistance to this pest. Keywords: Clover root weevil, Sitona obseletus, clover cultivars

2016 ◽  
Vol 78 ◽  
pp. 117-122 ◽  
Author(s):  
S. Hardwick ◽  
C.M. Ferguson ◽  
P. Mccauley ◽  
W. Nichol ◽  
R. Kyte ◽  
...  

Clover root weevil was first discovered in the northern South Island in 2006, and an introduced biocontrol agent the parasitoid wasp Microctonus aethiopoides, was immediately released there in response. As the weevil spread southwards, ongoing releases and natural parasitoid dispersal generally supressed it to economically tolerable levels. However, mild winters in the southern South Island during 2013 and 2014 allowed weevil populations to grow and spread quicker than the parasitoid. This severely impacted white clover production and farm profitability in parts of South Canterbury, Otago and Southland, thus, scientists and industry conducted 18 months of intensive parasitoid releases of ca. 1.1 million parasitised weevils at 6000 sites. The parasitoid rapidly established at all 50 monitored release sites and dispersed from them. The biocontrol agent now occurs at all locations in South Canterbury, Otago, Southland, and elsewhere in New Zealand, where clover root weevil is present. Keywords: biological control, pest spread, parasitic wasp, Sitona obsoletus, Microctonus aethiopoides, South Canterbury, Southland, Otago


2010 ◽  
Vol 63 ◽  
pp. 283-283
Author(s):  
P.J. Gerard ◽  
D.J. Wilson ◽  
T.M. Eden

The Irish wasp Microctonus aethiopoides was released in 2006 as a biocontrol agent for the clover root weevil Sitona lepidus a serious pest of white clover in New Zealand Following the successful and very rapid establishment of the Irish wasp there was high demand by farmers for the biocontrol Around 2000 minirelease samples were distributed directly to farmers through pastoral industry networks and field days These consisted of ten fieldcollected weevils exposed to the wasp in the laboratory at parasitism rates such that over 99 of samples contained parasitoids A random subsample of 100 recipient dairy farmers was surveyed subsequently by post with 59 responses The minireleases were well received most going to farmers that had previously experienced losses due to the weevil The mini releases were very effective in terms of getting the biocontrol to farms with 92 of insects arriving in good condition and 96 being released on the same day The farmers appeared receptive of the information provided with the samples indicating the project was successful in terms of technology transfer There was good recognition of DairyNZ with 79 showing awareness of the organisations funding enabling the biocontrol research


2014 ◽  
Vol 67 ◽  
pp. 256-266
Author(s):  
M.R. McNeill ◽  
T.M. Eden ◽  
V.M. Cave

White clover (Trifolium repens) crops are attacked by various insect pests including Sitona obsoletus (S lepidus) (CRW) Laboratory experiments were conducted to measure the toxicity of eight agrichemicals used against white clover insect pests or for weed control on CRW (parasitised and nonparasitised) and adults of its parasitoid Microctonus aethiopoides Laboratory experiments evaluated insect toxicity through direct contact with the agrichemical spray or via exposure to residues on clover foliage At field rates pymetrozine had the lowest impact on CRW biocontrol but had poor activity against nonparasitised CRW Taufluvalinate provided 60 control of CRW while having reduced impact on M aethiopoides adults (060 mortality) and was considered the best option in the field over the summer period Lambdacyhalothrin and diazinon were the most detrimental to CRW and its biocontrol agent when applied directly and through exposure to residues Diquat and an adjuvant caused some mortality to CRW and parasitoid Field studies are needed to corroborate these results


2008 ◽  
Vol 61 ◽  
pp. 24-30 ◽  
Author(s):  
P.J. Gerard ◽  
T.M. Eden ◽  
D.J. Wilson ◽  
G. Burch

The Irish wasp Microctonus aethiopoides was released in 2006 as a biocontrol agent for the clover root weevil Sitona lepidus a serious pest of white clover in New Zealand Following successful establishment two strategies were implemented to accelerate the widespread establishment of the parasitoid throughout the North Island The first approach was the establishment of regional nursery sites that act as point sources for natural and assisted dispersal With the assistance of Regional Councils and major landowners these were set up at sites favourable to the wasp and local people were provided the training and support to undertake collections and distribution of parasitized weevils Secondly samples of parasitized weevils were distributed for release directly to farmers through pastoral industry networks and events Initial results indicate that while the parasitoid established rapidly at Taranaki and Waikato nursery sites as anticipated it has failed to establish in Northland in two successive seasons


2006 ◽  
Vol 59 ◽  
pp. 285-289 ◽  
Author(s):  
P.J. Gerard ◽  
M.R. McNeill ◽  
B.I.P. Barratt ◽  
S.A. Whiteman

A European biotype of Microctonus aethiopoides was identified as the best candidate biocontrol agent for Sitona lepidus a serious New Zealand pasture pest A Moroccan biotype was already present throughout the country and hence there was no requirement to obtain Hazardous Substances and New Organisms (HSNO) Act approval to release new biotypes However as research had shown mating between the two biotypes produced hybrids with poor efficacy against target hosts and that the Moroccan biotype attacked several native weevil genera serious reservations were held about introducing the European biotype Concerns were overcome with the identification of a parthenogenetic strain of European M aethiopoides from Ireland which has little risk of hybridisation and a narrower host range than the Moroccan biotype Following regulation of M aethiopoides as a risk species this strain was considered to be a new organism Approval was sought and gained under the HSNO Act to release the strain


2003 ◽  
Vol 56 ◽  
pp. 118-122
Author(s):  
R.J. Townsend ◽  
M. O'Callaghan ◽  
V.W. Johnson ◽  
T.A. Jackson

Microbial control agents targeting soildwelling organisms need to be compatible with commonly used fertilisers The bacterium Serratia entomophila is used as a microbial control agent for control of the New Zealand grass grub Costelytra zealandica and Beauveria bassiana is an entomopathogenic fungus used to control a range of insect pests These biocontrol agents were formulated into granules and applied to pots together with five fertilisers commonly used on pastures throughout New Zealand Compatibility with S entomophila was also assessed in a field trial where treatments were applied by direct drilling and surface application There appeared to be no deleterious effect from the application of the fertiliser treatments on the establishment and survival of either S entomophila or B bassiana On the contrary there was a suggestion that some nitrogenous fertilisers may lead to an increase in numbers of the bacterial biocontrol agent


2003 ◽  
Vol 56 ◽  
pp. 174-179
Author(s):  
M. Walter ◽  
F.J.L. Stavely ◽  
R.B. Chapman ◽  
J.K. Pell ◽  
T.R. Glare ◽  
...  

Zoophthora radicans an entomophthoralean fungus is a potential biocontrol agent for a wide range of insect pests The mortality of six insect species inoculated with twelve Z radicans isolates from different hosts found in New Zealand was evaluated using a bioassay Zoophthora radicans isolates originating from the host being tested were generally but not always more effective than isolates originating from other species For example lightbrown apple moth (LBAM) was highly susceptible to isolates Z2 and Z6 from leafrollers (96 and 89 mortality respectively) but was not susceptible to any isolates from diamondback moth (DBM) (mortality lt;5 Plt;0001) DBM was highly susceptible to all isolates from DBM (gt;96 mortality) but only moderately susceptible to leafroller isolates (lt;66 Plt;0001) Although resting spore production was low overall some isolates produced more resting spores in certain hosts such as Z2 and Z6 in LBAM (Plt;0001) and Z8 and Z5 in DBM (Plt;005)


2001 ◽  
Vol 54 ◽  
pp. 147-151 ◽  
Author(s):  
S.L. Goldson ◽  
C. Phillips ◽  
M.M. McNeill ◽  
J.R Proffitt ◽  
R.P. Cane

Several candidate biological control agents of Sitona lepidus have been identified since a search commenced in 1997 Interestingly Microctonus aethiopoides from Europe is a much more effective parasitoid of S lepidus than the M aethiopoides ecotype already established in New Zealand To assess further the suitability of the European M aethiopoides for biological control of S lepidus 1599 infected S lepidus were shipped to New Zealand quarantine during late 2000 These yielded 267 parasitoid pupae from which 204 adult parasitoids were reared This material was obtained from a wide geographical range in Europe and has been used to establish cultures in New Zealand quarantine based on genetic material from France England Norway Finland Romania Ireland Scotland Italy and Wales This contribution presents an overview of the work associated with the importation of the parasitoids and the effort now being made to maintain genetic diversity Planned research is also discussed


2011 ◽  
Vol 15 ◽  
pp. 47-51
Author(s):  
P.M.S. Lane

This essay contains personal observations and interpretations by the author on the persistence of pastures in the northern North Island. Key pasture stress factors are identified as the increase of farming intensity over the past two decades, the impact of pasture renewal techniques and the role of pasture species on insect pest (particularly black beetle and clover root weevil) interactions. Keywords: insect pests, soil fertility, pasture renewal, cultivars, endophyte


Sign in / Sign up

Export Citation Format

Share Document