scholarly journals Effect of morphology and microstructure on the thermal conductivity of chalcogenide thermoelectric materials

2021 ◽  
Author(s):  
◽  
Hong Lian
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Đorđe Dangić ◽  
Olle Hellman ◽  
Stephen Fahy ◽  
Ivana Savić

AbstractThe proximity to structural phase transitions in IV-VI thermoelectric materials is one of the main reasons for their large phonon anharmonicity and intrinsically low lattice thermal conductivity κ. However, the κ of GeTe increases at the ferroelectric phase transition near 700 K. Using first-principles calculations with the temperature dependent effective potential method, we show that this rise in κ is the consequence of negative thermal expansion in the rhombohedral phase and increase in the phonon lifetimes in the high-symmetry phase. Strong anharmonicity near the phase transition induces non-Lorentzian shapes of the phonon power spectra. To account for these effects, we implement a method of calculating κ based on the Green-Kubo approach and find that the Boltzmann transport equation underestimates κ near the phase transition. Our findings elucidate the influence of structural phase transitions on κ and provide guidance for design of better thermoelectric materials.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2021 ◽  
Vol 33 (4) ◽  
pp. 1140-1148
Author(s):  
Hao Zhu ◽  
Chenchen Zhao ◽  
Pengfei Nan ◽  
Xiao-ming Jiang ◽  
Jiyin Zhao ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3154
Author(s):  
Kony Chatterjee ◽  
Tushar K. Ghosh

Since prehistoric times, textiles have served an important role–providing necessary protection and comfort. Recently, the rise of electronic textiles (e-textiles) as part of the larger efforts to develop smart textiles, has paved the way for enhancing textile functionalities including sensing, energy harvesting, and active heating and cooling. Recent attention has focused on the integration of thermoelectric (TE) functionalities into textiles—making fabrics capable of either converting body heating into electricity (Seebeck effect) or conversely using electricity to provide next-to-skin heating/cooling (Peltier effect). Various TE materials have been explored, classified broadly into (i) inorganic, (ii) organic, and (iii) hybrid organic-inorganic. TE figure-of-merit (ZT) is commonly used to correlate Seebeck coefficient, electrical and thermal conductivity. For textiles, it is important to think of appropriate materials not just in terms of ZT, but also whether they are flexible, conformable, and easily processable. Commercial TEs usually compromise rigid, sometimes toxic, inorganic materials such as bismuth and lead. For textiles, organic and hybrid TE materials are more appropriate. Carbon-based TE materials have been especially attractive since graphene and carbon nanotubes have excellent transport properties with easy modifications to create TE materials with high ZT and textile compatibility. This review focuses on flexible TE materials and their integration into textiles.


2021 ◽  
Author(s):  
Un-Gi Jong ◽  
Chol-Hyok Ri ◽  
Chol-Jin Pak ◽  
Chol-Hyok Kim ◽  
Stefaan Cottenier ◽  
...  

In the search for better thermoelectric materials, metal phosphides have not been considered to be viable candidates so far, due to their large lattice thermal conductivity. Here we study thermoelectric...


2019 ◽  
Vol 34 (3) ◽  
pp. 260 ◽  
Author(s):  
SHEN Jia-Jun ◽  
FANG Teng ◽  
FU Tie-Zheng ◽  
XIN Jia-Zhan ◽  
ZHAO Xin-Bing ◽  
...  

1998 ◽  
Vol 545 ◽  
Author(s):  
Y. Shinohara ◽  
Y. Imai ◽  
Y. Isoda ◽  
I. A. Nishida

AbstractThe Harman method was applied to measure thermal conductivity κ of thermoelectric materials, and the reliability of the measured κ was investigated. The quantitative κ requires a highly sensitive technique to measure minute Peltier heat. Temperature difference by Peltier heat pumping was successfully measured by developing the DC method of resistance measurement. κ of n-type Bi2Te3 sintered compact and n-type PbTe boules was measured at 295K by the Harman method. Static comparative method was also applied to obtain the standard value of κ. In the case of Bi2Te3, the κ by the Harman method agreed well with the standard value. In the case of PbTe in the electron concentration ne range <5 × 1024/m3, the κ almost agreed with the standard value. However, PbTe in the ne range ≥1 × 1025/m3 showed a larger κ than the standard value. The Harman method has an error to give the larger κ for the material with a large carrier component κ, of κ This error is due to the fast conduction of Peltier heat by the carrier. The reliable κ can be measured for the material with a small κ,.


2010 ◽  
Vol 11 (4) ◽  
pp. 044306 ◽  
Author(s):  
Chunlei Wan ◽  
Yifeng Wang ◽  
Ning Wang ◽  
Wataru Norimatsu ◽  
Michiko Kusunoki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document