Extractivisms

2021 ◽  
Author(s):  
Eduardo Gudynas

Nature and communities in the global south is being overwhelmed at a shocking rate. In many places this is due to ventures such as large-scale open-pit mining, oil extraction in tropical areas, and the spread of monocultures. These and other such forms of natural resource appropriation are usually known as extractivisms. This introductory book on the one hand adopts an interdisciplinary and critical perspective, incorporating contributions from economics, politics, ecology, and more. On the other hand it is an exercise in the politics among humans and with the environment. Eduardo Gudnyas explores negative local impacts such as ecological and health degradation or violence, along with spillover effects that redefines democracy and justice. Significantly, presented for the first time in English is a comprehensive overview of the theoretical innovations currently being discussed in the South, such as the distinction between appropriation and production modes and a redefinition of surplus to include social and economic features or new understandings on conflict dynamics. Furthermore, Gudynas discusses the Latin American peculiarities of extractivisms produced both by conservative and new-left governments, making clear that it has very deep roots in culture and ideologies, and offers solutions for the future.

Author(s):  
T. V. Galanina ◽  
M. I. Baumgarten ◽  
T. G. Koroleva

Large-scale mining disturbs wide areas of land. The development program for the mining industry, with an expected considerable increase in production output, aggravates the problem with even vaster territories exposed to the adverse anthropogenic impact. Recovery of mining-induced ecosystems in the mineral-extracting regions becomes the top priority objective. There are many restoration mechanisms, and they should be used in integration and be highly technologically intensive as the environmental impact is many-sided. This involves pollution of water, generation of much waste and soil disturbance which is the most typical of open pit mining. Scale disturbance of land, withdrawal of farming land, land pollution and littering are critical problems to the solved in the first place. One of the way outs is highquality reclamation. This article reviews the effective rules and regulations on reclamation. The mechanism is proposed for the legal control of disturbed land reclamation on a regional and federal level. Highly technologically intensive recovery of mining-induced landscape will be backed up by the natural environment restoration strategy proposed in the Disturbed Land Reclamation Concept.


2020 ◽  
Vol 9 (3) ◽  
pp. 109-118
Author(s):  
Lei Zhao ◽  
Greg You

Brown coal is young, shallowly deposited, and widely distributed in the world. It is a fuel commonly used to generate electricity. This paper first reviews the resources and characteristics of brown coal in Victoria, Australia, and its exploitation and contribution to the economy or power supply in Victoria. Due to the shallow depth of the brown coal seam, e.g. very favorable stripping ratio, open pit mining is the only mining method used to extract the coal at low cost for power generators. With the large-scale mining operations, cases of batter failure were not rare in the area. From the comprehensive review of past failures, overburden batter tends to fail by circular sliding, coal batter tends to fail by block sliding after the overburden is stripped due to a weak water-bearing layer underneath the coal seam and tension cracks developed at the rear of the batter, and batter failure is typically coincided with peak raining seasons. Secondly, the paper reviews the case study of Maddingley Brown Coal (MBC) Open Cut Mine batter stability, including geology, hydrogeology, and hydro-mechanically coupled numerical modelling. The modelling employs three-dimensional finite element method to simulate the MBC northern batter where cracks were observed in November 2013. The comprehensive simulation covers an overburden batter, a brown coal batter, two rainfall models, and a buttressed batter. The simulated results agree well with observed data, and it is found that the rainfall at the intensity of 21mm substantially lowered the factor of safety of the coal batter.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziheng Song ◽  
Yinli Bi ◽  
Jian Zhang ◽  
Yunli Gong ◽  
Huihui Yang

Abstract It is urgent to restore the ecological function in open-pit mining areas on grassland in Eastern China. The open-pit mines have abundant of mining associated clay, which is desirable for using as a soil source for ecological restoration. The mining associated clay in Hulunbuir district, Inner Mongolia was selected and mixed with a sandy soil at a ratio of 1:1 (S_C soil). Also, effects of arbuscular mycorrhizal fungi (AMF) inoculation on soil functions were studied. The aboveground and underground biomass of maize in S_C soil was 1.49 and 2.41 times higher than that of clay soil, respectively. In the topsoil and S_C soil, the growth hormone (IAA) and cytokinin (CTK) levels of maize were higher than that of clay, while abscission acid (ABA) levels were lower. The inoculation with AMF could significantly improve the biomass of maize and enhance the stress resistance of plants. Through structural equation model (SEM) analyses, it was found that the soil type and AMF inoculation had the most direct impact on maize growth and biomass content. These finds extend our knowledge regarding a low-cost method for physical and biological improvement of mining associated clay, and to provide theoretical support for large-scale application in the future.


Author(s):  
Nikita O. Kapustin ◽  
Dmitry A. Grushevenko

Unconventional oils have taken the global oil industry by storm and have secured an 8% share in the global liquid fuels production in under 20 years. And it is without a doubt that these resources will continue to play an important role in the future. Cost analysis of unconventional oil types has shown that Light Tight Oil (LTO) or shale oil still holds potential for technological and economical improvement, however, the revolutionary stage in development has probably already been passed in the US. For the rest of the world, the issue of kick starting LTO production lies as much in the fields of adapting the existing technologies, as overcoming economic, legislative and environmental barriers. The same cannot be said for heavy oil and bitumen production, as open pit mining is demonstrating cost escalation and resource base depletion, whilein situproduction approach has reached the limit of technological progress and production costs are mostly determined by external factors. Oil price fluctuation and the emergence of more economically viable unconventional oil sources have shifted attention away from kerogen oil and substantially halted production technologies development. The forecast of unconventional oil was conducted along two scenarios: Baseline (a business-as-usual scenario) and Technological (scenario of forced technology development and transfer). The share of unconventional oil in global crude production will increase to 17–21%, depending on scenario. The main difference between scenarios is the rate of kerogen production, which benefits from the favorable conditions of the Technological scenario. Large-scale LTO production will remain a local North American phenomenon in both scenarios. More important than geological or technological factors is the unique business environment, characteristic for the USA, which would be impossible to replicate in any other country. Expansion of unconventional oil production as stimulated competition on the liquid fuels market. Conventional oil producers have mostly adapted to the new environment and will continue to dominate in the forecast period. The greatest pressure is put on the more costly alternative supply sources: biofuels, coal-to-liquid and gas-to-liquid; which have the least promising prospects in the current market.


2020 ◽  
Vol 12 (3) ◽  
pp. 367 ◽  
Author(s):  
Shunyao Wang ◽  
Xiaoping Lu ◽  
Zhenwei Chen ◽  
Guo Zhang ◽  
Taofeng Ma ◽  
...  

Illegal open-pit mining causes environmental harm and undermines sustainable development. Conventional monitoring approaches such as field research and unmanned aerial vehicle (UAV) imagery are time-consuming and labor-intensive, making large-scale monitoring difficult. In comparison, optical remote sensing imagery can cover large areas but is vulnerable to adverse weather conditions and is not sensitive to vertical ground changes. As open-pit excavation causes sudden changes in the scattering properties of ground objects along with dramatic vertical deformation, we evaluated the feasibility of using interferometric synthetic aperture radar (InSAR) coherence to identify illegal mining activities. Our method extracts the coherence coefficient from two SAR images taken on different dates, applies thresholding and filtering to extract a decorrelation map, and then overlays this with legal mining boundaries and optical satellite images to identify illegal mining activities. For three test cases in southwestern Inner Mongolia, China, 49 legal mining sites were correctly detected (with an accuracy of 90.74%) as well as six illegal mining sites. Ground truthing confirmed the presence of ongoing activity at one of these sites. Our study shows that InSAR coherence is suitable for the identification of mining activities, and our method provides a new approach for the detection and monitoring of illegal open-pit mining.


2019 ◽  
Vol 105 ◽  
pp. 01024 ◽  
Author(s):  
Oleg Litvin ◽  
Vladimir Makarov ◽  
Andrey Strelnikov ◽  
Ekaterina Tyuleneva

As is known from the classic works on open pit mining, the bench is a separately developed part of the rock layer, having the form of a step. It should also be noted that it is necessary to clearly differentiate the concepts of “bench height” and “height of the layer to be removed.” The benches are often divided into subbenches, developed by different excavation equipment or by the same equipment both sequentially and simultaneously, but having transport routes that are uniform for the bench. As an example, an excavator stripping of the upper and lower subbenches with loading, respectively, at the level of the excavator and above this level, is usually given, that is, the transport route (road) passes through an intermediate platform bench located in the middle of its height. Therefore, the excavation layer of any height, which is, in fact, a part of the working bench, can be considered as an independent bench with all its attributes, but in order to avoid duplication of definitions, this paper suggests the name “extraction layer”. When developing this element various digging modes can be applied. In this paper, we studied the main modes and selected the one that provides the highest performance.


2021 ◽  
pp. 102-106
Author(s):  
O. A. Isyanov ◽  
◽  
D. I. Ilderov ◽  
V. I. Suprun ◽  
S. A. Radchenko ◽  
...  

Instability of pit wall slopes is the most critical accident in open pit mining. The risk of damages to pit walls is proportional to the height of exposed surfaces and to the time of exposure. Among many factors governing pit wall stability, the major factor is geological structure and weakening zones in rock mass. Deformation processes are initiated in host rock mass of coal seams mostly because of undercutting of weak interlayers. Alongside with local undercutting, another cause of landslides is transition of coal mining from down-dip extraction to up-dip extraction. The sequence of mining and morphology of weak interlayers also have influence on initiation and evolution of deformations. The basic component of engineering solutions on pit wall stability control is optimization of mining sequence and methods of accessing working horizons in open pit mines. Large-scale deformation of Western and Southeastern pit walls in Urtui mine could be avoided using the optimized sequence of mining operations. For example, mining advance mostly along the curve of the Urtui centroclinal fold, with early access and destress of the eastern and, first of all, western wings of the fold could make it possible to evade from up-dip mining of coal seams and, as a consequence, to solve the major geomechanical problems in the open pit mine.


2021 ◽  
Vol 13 (12) ◽  
pp. 6919
Author(s):  
Izabela-Maria Apostu ◽  
Maria Lazar ◽  
Florin Faur

Some valuable minerals, such as lignite, are extracted through open-pit mining works. After the cessation of mining activity, large-scale gaps result in the landscape. These gaps, also called “remaining gaps”, represent some of the roughest types of environmental impacts. After the cessation of mining activity, recovery and ecological restoration works are required. However, it is first necessary to carry out risk assessment studies considering the possible future influences on the final slopes. For this study, flooding of the remaining lignite open-pits gaps was considered as the ecological restoration option. The study was based on extensive research, including sampling, laboratory tests, statistical-mathematical processing, hypothesis formulation, evaluations, interpretations, and field observations, regarding the rock behavior and occurrence of negative geotechnical phenomena (geotechnical phenomena that have a negative impact and a risk on the integrity of the environment and local communities, such as landslides, rockfalls, liquefaction, suffosis) during the flooding process. This paper’s originality consists of combining the methods and methodologies developed with the help of classic methods (Fellenius, Janbu, and Bishop methods) and probabilistic ones (Rosenblueth method) existing in the specialized literature for solving the proposed problem and structuring the information similar to a guide.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1913
Author(s):  
Marek Cała ◽  
Katarzyna Cyran ◽  
Joanna Jakóbczyk ◽  
Michał Kowalski

The extraction of the Bełchatów lignite deposit located in the vicinity of the Dębina salt dome requires careful planning that considers the influence of mining projects on the slope and salt dome stability conditions. The instability problem is directly related to horizontal and vertical displacement, as well as the complex geological and mining conditions. These conditions are very unique with regard to the co-occurrence of the salt dome and lignite deposits in the same area, as well as the large scale of the pit wall slope. Thus, predicting rock mass behavior and ensuring the safety of mining operations are important issues. The presented analysis focused on the influence of long-term lignite extraction on the western pit wall slope of the Bełchatów field and the salt dome’s stability conditions. This study offers a comprehensive approach to a complex geotechnical problem defined by large-scale, complex geometry, and geological conditions. The rock mass behavior and stress conditions are simulated in numerical modelling. The results of the presented analysis will be useful not only for present mining activities but also for future developments related to post-mining and recultivation plans.


Sign in / Sign up

Export Citation Format

Share Document