Effect of Bake Hardening Treatment on Mechanical Properties of 7075 Aluminum Alloy Sheets Fabricated by Twin Roll Strip Casting

2016 ◽  
Vol 54 (7) ◽  
pp. 483-491 ◽  
Author(s):  
Hyoung-Wook Kim ◽  
Dong-Hyeon Koh ◽  
Yun-Soo Lee ◽  
Min-Seok Kim ◽  
Yong-Sik Ahn
2013 ◽  
Vol 829 ◽  
pp. 62-66 ◽  
Author(s):  
Alireza Fallahi ◽  
Hossein Hosseini-Toudeshky ◽  
Seyed Mahmoud Ghalehbandi

It is the objective of this study to investigate the effect of ECAP processing and heat treatment on the mechanical properties of the UFG 7075 alloy. Also the effect of post ECAP heat treatment is investigated. The alloy is processed by ECAP after annealing as well as solution treatment to produce an UFG structure. Furthermore mechanical properties and their variations during annealing and aging are investigated. The hardness of the pre-ECAP annealed and the pre-ECAP solutionised 7075 aluminum alloy has increased significantly compared with that of the CG sample. Also hardness of ECAPed specimen has not experienced significant changes in post-ECAP heat treatment and indicated that the alloy had approximately good thermal stability.


2019 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
Mahmoud Alasad ◽  
Mohamad Yahya Nefawy

The aluminum alloys of the 7xxx series consist of Al with Zn mainly, Mg and Cu. 7xxx aluminum alloys has high mechanical properties making it distinct from other aluminum alloys. In this paper, we examine the effect of adding Nickel and heat treatments on the microstructure and hardness of the 7075 aluminum alloy. Were we added different percentages of nickel [0.1, 0.5, 1] wt% to 7075 Aluminum alloy, and applied various heat treatments (artificial aging T6 and Retrogression and re-aging RRA) on the 7075 alloys that Containing nickel. By applying RRA treatment, we obtained better results than the results obtained by applying T6 treatment, and we obtained the high values of hardness and a smoother microstructure for the studied alloys by the addition of (0.5 wt%) nickel to alloy 7075.


2018 ◽  
Vol 773 ◽  
pp. 171-178
Author(s):  
Toshio Haga ◽  
Kentaro Okamura ◽  
Hisaki Warari ◽  
Shinichi Nishida

This paper shows improvements made to a vertical type tandem twin roll caster and the appropriate casting conditions necessary to cast three-layer clad strips, the base strip of which has a lower solidification temperature than the overlay strip. In experiments, 4045 aluminum alloy was used for the base strip and 3003 aluminum alloy was used for the overlay strips. The roll speed was 30 m/min. By connecting the overlay strips to the base strip one at a time and cooling the base strip to between 450 and 530°C after applying the first overlay strip, a sound three-layer clad strip – defined as one in which the interfaces between strips are clear and do not separate during bending-to-failure tests – could be cast. The tensile shear testing between the base and second overlay strip was improved as the base-strip temperature was increased to 450-530°C range.


2013 ◽  
Vol 652-654 ◽  
pp. 2427-2431 ◽  
Author(s):  
Xin Su ◽  
G M Xu ◽  
Y H Feng

In this paper, the effect of magnetostatic field on the microstructure and microsegregation of 7075 aluminum alloy strip by twin-roll casting is researched , and the result shows that when no electromagnetic field is applied during the process of roll-casting , the microstructure of 7075 strip is most composed of coarse columnar and dendritic crystal , the direction of grains is equal to roll-casting direction. When the magnetostatic field with 0.13T intensity is applied during the twin-roll casting, the microstructural of strip becomes uniform ,refined and equiaxed at the central zone of strip, and the dendritic crystal at the surficial is disordered and refined significantly.


2021 ◽  
Vol 1035 ◽  
pp. 102-107
Author(s):  
Shao Ming Ma ◽  
Chuan Liu Wang ◽  
Yun Lin Fan

Light-weight and high-strength aluminum alloy drill pipes are potential and promising to replace traditional steel drill pipes. In this study, the grain size and mechanical properties of aluminum alloy drilling pipe materials reinforced by in-situ TiB2 particles were studied. The results showed when reinforced by in-situ TiB2 particles the grain size of aluminum alloy materials was refined from 155 m to 57 m and ultimate tensile strength was increased from 590 MPa to 720 MPa. Besides, the results also indicated that the friction coefficient was reduced from 0.99 to 0.50 and thus the abrasion resistance of 7075 aluminum alloy was enhanced by 34 %. This study provided theoretical basis for the application of light-weight and high-strength aluminum alloy drill pipes in directional drilling and ultra-deep wells.


2020 ◽  
Vol 2020.28 (0) ◽  
pp. 409
Author(s):  
Makoto HAGIWARA ◽  
Shogo IMAI ◽  
Takahiro SHIGA ◽  
Mizuki KAWAWA ◽  
Shinichi NISHIDA

Sign in / Sign up

Export Citation Format

Share Document