Effect of Heat Treatment on Mechanical Properties of ECAPed 7075 Aluminum Alloy

2013 ◽  
Vol 829 ◽  
pp. 62-66 ◽  
Author(s):  
Alireza Fallahi ◽  
Hossein Hosseini-Toudeshky ◽  
Seyed Mahmoud Ghalehbandi

It is the objective of this study to investigate the effect of ECAP processing and heat treatment on the mechanical properties of the UFG 7075 alloy. Also the effect of post ECAP heat treatment is investigated. The alloy is processed by ECAP after annealing as well as solution treatment to produce an UFG structure. Furthermore mechanical properties and their variations during annealing and aging are investigated. The hardness of the pre-ECAP annealed and the pre-ECAP solutionised 7075 aluminum alloy has increased significantly compared with that of the CG sample. Also hardness of ECAPed specimen has not experienced significant changes in post-ECAP heat treatment and indicated that the alloy had approximately good thermal stability.

2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2011 ◽  
Vol 409 ◽  
pp. 281-286
Author(s):  
Yutaka Matsuda ◽  
Goroh Itoh ◽  
Yoshinobu Motohashi

Friction stir processing (FSP) is a method for controlling the microstructure that has been proposed by applying friction stir welding, FSW. In this study, microstructure and mechanical properties of a 7075 aluminum alloy subjected to multi-pass FSP, MP-FSP, are assessed to obtain fundamental knowledge for improving the plasticity of aluminum alloys. The MP-FSP has been applied to 7075 alloy plates with T6 and O tempers, and microstructural characterization has been made by means of optical and scanning electron microscopies together with EDX and EBSD analyses, while mechanical properties were measured by means of micro hardness and tensile tests at room and high temperatures. From microstructural observation, a new zone, PBZ, has been discovered between stir zones, SZs. The PBZ is composed of two types of (fine and coarse) grains, where the coarse grain contains many sub-grains. Hardness in PBZ is intermediate between that in BM and SZ both in T6 and O specimens; hardness generally decreases and increases in T6 and O specimens, respectively, by MP-FSP. In accord to the hardness change, strength at room temperature is decreased by MP-FSP in T6 specimen, and increased in O specimen. Elongation at 773K is increased both in T6 and O specimens because of superplastic deformation. However, local elongation is smaller in PBZ than in SZ, which can be attributed to the microstructural change by the deformation: grain shape remains equiaxed in SZ while it becomes elongated in the tensile direction in PBZ.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Seongbin An ◽  
Minsuk Kim ◽  
Chaeeul Huh ◽  
Chungseok Kim

This study aims to develop the mechanical properties of the Al6Si2Cu aluminum alloy through the double-solution treatment. In addition to the Al matrix, large amounts of coarse eutectic Si, Al2Cu intermetallic, and Fe-rich phases were generated through thermo-calc simulation in agreement with the equilibrium phases. The eutectic Si phase is fragmented and spheroidized by the solution treatment as the heat treatment temperature and time increase. The Al2Cu intermetallic phase is dissolved into the Al matrix, resulting in an increase in both strength and elongation. The second-step solution temperature at 525 °C should be an optimum condition for enhancing the mechanical properties of the Al6Si2Cu aluminum alloy.


2018 ◽  
Vol 23 (1) ◽  
pp. 18-26
Author(s):  
Kazimierz Czapczyk ◽  
Stanisław Legutko ◽  
Piotr Siwak ◽  
Karol Grochalski ◽  
Anna Mazurek

The article presents the results of mechanical tests of Ni-P layers deposited by the chemical reduction method on the AW-7075 aluminum alloy. The effect of layer thickness on hardness and microhardness of Vickers, which was determined by the DSI method, and their adhesion to the substrate by scratch method were investigated. The morphology was obtained using light microscopy and the topography of the examined layers using a contact profilometer. Different thicknesses were used to determine their effect on adhesion of the leyers to AW-7075 alloy. The results allowed to state that Ni-P layers of higher thickness are characterized by higher hardness and Young's modulus values than thinner Ni-P layers, and also show better adhesion to the AW-7075 alloy.


2006 ◽  
Vol 317-318 ◽  
pp. 513-516 ◽  
Author(s):  
Satoshi Sodeoka ◽  
Masato Suzuki ◽  
Takahiro Inoue

Alumina/zirconia nano-composite coating was fabricated by plasma spraying using agglomerated feedstock from fine powders of about 100 nm. The coating was consisted of fine γ-alumina and zirconia crystals with size of several nano meter and some amorphous boundary layers. The amorphous phase was crystallized and disappeared after heat treatment at 930°C. However, the crystallite size was kept under 50 nm even after 1500°C-100hr heating, so the alumina-zirconia nano-composite showed good thermal stability against the grain growth.


Author(s):  
Mohamad Yehea Al nefawy ◽  
Fouad El dahiye ◽  
Mahmoud Al Assaad

The aluminum alloys of the 7xxx series consist of Al with Zn mainly, Mg and Cu. 7xxx aluminum alloys has high mechanical properties making it distinct from other aluminum alloys. The effect of adding Nickel and heat treatments on the microstructure, formed phases and tensile properties of the 7075 aluminum alloy were studied in this paper. Different percentages of nickel [0.1, 0.5, 1] wt% was added to 7075 Aluminum alloy, and various heat treatments (artificial aging T6 and Retrogression and re-aging RRA) was applied on the 7075 alloys that containing nickel. The results obtained by applying of RRA treatment were better than the results of T6 treatment, the tensile properties increased and the microstructure became softer by adding nickel to the studied alloys. The maximum tensile strength of 7075 aluminum alloy was (UTS = 437 Mpa) when RRA heat treatment was applied and 0.5% nickel was added.


2014 ◽  
Vol 217-218 ◽  
pp. 274-280
Author(s):  
Kang Du ◽  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Qiang Zhu

Turbocharger impellers undergo extreme cyclic speed conditions and thus fatigue fracture in service. Any kind of defects, even defects with sizes of tens of micrometres, can make significant impact on service life of the impellers. The alloy used for thixocast impellers is the aluminum alloy 319s. T61 heat treatment is used to improve mechanical properties. However, the solution treatment in the standard T61 heat treatment of the 319s alloy can induce incipient melting defects. This paper carried out systematic study of formation of defects caused by the incipient melting during solution treatment in the thixocast and heat treated impellers, using optical and scanning electron microscope. Based on the study, the critical temperature of incipient melting is detected. An optimized two-stage solution treatment is therefore proposed.


Sign in / Sign up

Export Citation Format

Share Document