scholarly journals Enhanced Energy-Transfer Properties in Core-Shell Photoluminescent Nanoparticles Using Mesoporous SiO2 Intermediate Layers

2020 ◽  
Vol 58 (2) ◽  
pp. 137-144
Author(s):  
Woo Hyeong Sim ◽  
Seyun Kim ◽  
Weon Ho Shin ◽  
Hyung Mo Jeong

Multi-layer core-shell nanoparticles (YVO<sub>4</sub>:Nd<sup>3+</sup>/mSiO<sub>2</sub>/SiO<sub>2</sub>) consisting of silica cores (SiO<sub>2</sub>), mesoporous silica (mSiO<sub>2</sub>) intermediate layers, and Neodymium doped rare-earth phosphor (YVO<sub>4</sub>:Nd<sup>3+</sup>) shell layers were successfully synthesized using the stepwise sol-gel method. The morphological structure and optical properties of the functional core-shell nanoparticles were characterized and evaluated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) analysis. mSiO<sub>2</sub> intermediate layers were utilized as the bridge between the core and shell materials. Their porous surfaces served to anchor the YVO<sub>4</sub>:Nd<sup>3+</sup> crystals. This prevents energy loss during the energy transfer of electrons, resulting in improved optical properties. The use of intermediate layer combinations of mSiO<sub>2</sub>/SiO<sub>2</sub> in the coreshell structure also improved cost-effectiveness, because the core is filled with cheap silica, not expensive phosphors. Even though the nanoparticles used only a thin layer of the photoluminescent shell materials, the optical properties, resulting from the energy-transfer emitting mid-infrared light, were remarkably enhanced by increasing the crystallinity of the phosphor. To demonstrate the practical use of the synthesis method, the photoluminescent properties of the core-shell nanoparticles were optimized by adjusting the annealing temperature and scaling to mass production. We believe that our efficient synthetic strategy provides a facile way of obtaining functional, cost-effective core-shell nanoparticles with improved photoluminescent properties.

2017 ◽  
Vol 899 ◽  
pp. 221-226 ◽  
Author(s):  
M.M. Lima ◽  
J.P.Z. Gonçalves ◽  
C. Soares ◽  
Humberto Gracher Riella ◽  
S.C. Fernandes ◽  
...  

Core–shell Fe2O3@C nanoparticles are very studied due to its biocompatibility with plant and animals cells and due its special properties of chemical adsorption. Thus, the definition of an easy synthesis method of these nanoparticles is very important to the scientific studies and to future applications of these materials. For example, the properties of these nanoparticles depend of the combination between some processing parameters, as the temperature, time, chemical composition, atmosphere and others. The mass yield of the synthesis processes depend of these parameters and are important information. In this work the effect of temperature and of the concentration of the iron precursor were evaluated on the characteristics of the proposed nanoparticles. The nanostructures of Fe2O3 coated with carbon (Fe2O3@C) were synthetized by adapted co-precipitation hydrothermal rote. In 40.0 ml of distilled water was added 1.800 g of glucose, 6.006 g of urea, 0.500 g of polyethylene Glycol (PEG 1500) and different concentrations of iron nitrate Fe (NO2)3.9H2O and different temperature values were applied. The Fe2O3@C core-shell were characterized by scanning electron microscopy (SEM/FEG), Energy Dispersive Scanning (EDS) and X-ray Diffractions (XRD). Results showed that nanoparticles form clusters with different sizes that are dependent on the temperature values and Fe (NO3)3.9H2O concentration. The core-shell mass has a linear relation with the iron precursor mass and the reaction temperatures influences the microstructure of the core-shell nanoparticles.


MRS Advances ◽  
2018 ◽  
Vol 3 (47-48) ◽  
pp. 2899-2904
Author(s):  
Ning Bian ◽  
Robert A. Mayanovic ◽  
Mourad Benamara

ABSTRACTThe mixed-valence oxide Co3O4 nanoparticles, having the normal spinel structure, possess large surface area, active-site surface adsorption properties, and fast ion diffusivities. Consequently, they are widely used in lithium-ion batteries, as well as for gas sensing and heterogeneous catalysis applications. In our research, we use a two-step method to synthesize Co3O4–based core-shell nanoparticles (CSNs). Cobalt oxide (Co3O4) nanoparticles were successfully synthesized using a wet synthesis method employing KOH and cobalt acetate. Manganese was incorporated into the Co3O4 structure to synthesize inverted Co3O4@MnxCo3-xO4 CSNs using a hydrothermal method. By adjustment of pH value, we obtained two different morphologies of CSNs, one resulting in pseudo-spherical and octahedron-shaped nanoparticles (PS type) whereas the second type predominantly have a nanoplate (NP type) morphology. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS) have been performed in order to determine the morphological and structural properties of our CSNs, whereas the magnetic properties have been characterized using a superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the CSNs have the same spinel crystal structure throughout the core and shell with an average particle size of ∼19.8 nm. Our Co3O4 nanoparticles, as measured prior to CSN formation, are shown to be antiferromagnetic (AFM) in nature as shown by the magnetization data. Our SQUID data indicate that the core-shell nanoparticles have both AFM (due to the Co3O4 core) and ferrimagnetic properties (of the shell) with a coercivity field of 300 Oe and 150 Oe at 5 K for the PS and NP samples, respectively. The magnetization vs temperature data show a spin order-disorder transition at ∼33 K and a superparamagnetic blocking temperature of ∼90 K for both batches.


2013 ◽  
Vol 813 ◽  
pp. 332-335
Author(s):  
Mei Gui Ou ◽  
Chun Lin Yang ◽  
Shao Han Cai ◽  
Qi Wei Zhu

Core-shell nanoparticles Gd2O3:Tb3+/SiOx were obtained by encapsulating Gd2O3:Tb3+ in a polysiloxane shell. We studied the influence of two kinds of reagents (NaOH and Bu4NOH) reacting with precursor solution on size and luminescent property of nanoparticles. The result showed that the reaction involving NaOH was more favorable to the growth of nanoparticles, thus enhanced the energy transfer between the core and the shell of particles and improved their luminescent intensities.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 563 ◽  
Author(s):  
Mahmud Reaz ◽  
Ariful Haque ◽  
Kartik Ghosh

Improvement of magnetic, electronic, optical, and catalytic properties in cutting-edge technologies including drug delivery, energy storage, magnetic transistor, and spintronics requires novel nanomaterials. This article discusses the unique, clean, and homogeneous physiochemical synthesis of BaTiO3/iron oxide core–shell nanoparticles with interfaces between ferroelectric and ferromagnetic materials. High-resolution transmission electron microscopy displayed the distinguished disparity between the core and shell of the synthesized nanoparticles. Elemental mapping and line scan confirmed the formation of the core–shell structure. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy detected the surface iron oxide phase as maghemite. Rietveld analysis of the X-ray diffraction data labeled the crystallinity and phase purity. This study provides a promising platform for the desirable property development of the futuristic multifunctional nanodevices.


2014 ◽  
Vol 87 (2) ◽  
pp. 43-49
Author(s):  
Takashi KANDA ◽  
Kanjiro TORIGOE ◽  
Hirobumi SHIBATA ◽  
Masahiko ABE ◽  
Hideki SAKAI

2016 ◽  
Vol 244 ◽  
pp. 181-186 ◽  
Author(s):  
Hai-Xia Cheng ◽  
Xiao-Xu Wang ◽  
Yao-Wen Hu ◽  
Hong-Quan Song ◽  
Jin-Rong Huo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document