Golden section in the Carnot cycle

2000 ◽  
Vol 170 (11) ◽  
pp. 1253
Author(s):  
Valerian V. Popkov ◽  
Evgenii V. Shipitsyn
Keyword(s):  
2000 ◽  
Vol 43 (11) ◽  
pp. 1155-1157 ◽  
Author(s):  
Valerian V Popkov ◽  
Evgenii V Shipitsyn
Keyword(s):  

Author(s):  
Y.N. Rybakov ◽  
◽  
V.E. Danilov ◽  
I.V. Danilov ◽  
◽  
...  

The problem of losses of oil products from leaks during their storage and transportation at oil supply facilities is considered. The influence of oil product leaks on the environmental situation around oil depots and gas stations is shown. A detailed overview of existing methods and tools for detecting leaks of petroleum products from storage facilities is presented. The evaluation of their effectiveness. Two methods for detecting oil leaks and devices based on them are proposed. The first device monitors the movement of liquid in the tank, the second-detects petroleum products in wastewater. The problem of recovery of petroleum vapors and environmental pollution from the release of vapors of light fractions into the atmosphere is also considered. An overview of existing methods and means of recovery of petroleum vapors is presented. Two methods and devices for capturing oil vapors and returning them to the reservoir are proposed, based on different principles: vapor absorption in the cooled oil product and vapor recovery on the principle of the Carnot cycle. It is shown that these devices can provide effective detection of oil leaks and recovery of their vapors, as well as improve the effectiveness of environmental protection at modern gas stations and tank farms.


Author(s):  
E. L. Wolf

The Sun’s spectrum on Earth is modified by the atmosphere, and is harvested either by generating heat for direct use or for running heat engines, or by quantum absorption in solar cells, to be discussed later. Focusing of sunlight requires tracking of the Sun and is defeated on cloudy days. Heat engines have efficiency limits similar to the Carnot cycle limit. The steam turbine follows the Rankine cycle and is well developed in technology, optimally using a re-heat cycle of higher efficiency. Having learned quite a bit about how the Sun’s energy is created, and how that process might be reproduced on Earth, we turn now to methods for harvesting the energy from the Sun as a sustainable replacement for fossil fuel energy.


Author(s):  
Nicholas Mee

Celestial Tapestry places mathematics within a vibrant cultural and historical context, highlighting links to the visual arts and design, and broader areas of artistic creativity. Threads are woven together telling of surprising influences that have passed between the arts and mathematics. The story involves many intriguing characters: Gaston Julia, who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; Charles Howard, Hinton who was imprisoned for bigamy but whose books had a huge influence on twentieth-century art; Michael Scott, the Scottish necromancer who was the dedicatee of Fibonacci’s Book of Calculation, the most important medieval book of mathematics; Richard of Wallingford, the pioneer clockmaker who suffered from leprosy and who never recovered from a lightning strike on his bedchamber; Alicia Stott Boole, the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. The book includes more than 200 colour illustrations, puzzles to engage the reader, and many remarkable tales: the secret message in Hans Holbein’s The Ambassadors; the link between Viking runes, a Milanese banking dynasty, and modern sculpture; the connection between astrology, religion, and the Apocalypse; binary numbers and the I Ching. It also explains topics on the school mathematics curriculum: algorithms; arithmetic progressions; combinations and permutations; number sequences; the axiomatic method; geometrical proof; tessellations and polyhedra, as well as many essential topics for arts and humanities students: single-point perspective; fractals; computer art; the golden section; the higher-dimensional inspiration behind modern art.


2020 ◽  
Vol 8 (46) ◽  
pp. 24284-24306
Author(s):  
Xuefeng Ren ◽  
Yiran Wang ◽  
Anmin Liu ◽  
Zhihong Zhang ◽  
Qianyuan Lv ◽  
...  

Fuel cell is an electrochemical device, which can directly convert the chemical energy of fuel into electric energy, without heat process, not limited by Carnot cycle, high energy conversion efficiency, no noise and pollution.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 810
Author(s):  
David Sands

The Carnot cycle and the attendant notions of reversibility and entropy are examined. It is shown how the modern view of these concepts still corresponds to the ideas Clausius laid down in the nineteenth century. As such, they reflect the outmoded idea, current at the time, that heat is motion. It is shown how this view of heat led Clausius to develop the entropy of a body based on the work that could be performed in a reversible process rather than the work that is actually performed in an irreversible process. In consequence, Clausius built into entropy a conflict with energy conservation, which is concerned with actual changes in energy. In this paper, reversibility and irreversibility are investigated by means of a macroscopic formulation of internal mechanisms of damping based on rate equations for the distribution of energy within a gas. It is shown that work processes involving a step change in external pressure, however small, are intrinsically irreversible. However, under idealised conditions of zero damping the gas inside a piston expands and traces out a trajectory through the space of equilibrium states. Therefore, the entropy change due to heat flow from the reservoir matches the entropy change of the equilibrium states. This trajectory can be traced out in reverse as the piston reverses direction, but if the external conditions are adjusted appropriately, the gas can be made to trace out a Carnot cycle in P-V space. The cycle is dynamic as opposed to quasi-static as the piston has kinetic energy equal in difference to the work performed internally and externally.


Author(s):  
Sagnik Pal ◽  
Ranjan Das

The present paper introduces an accurate numerical procedure to assess the internal thermal energy generation in an annular porous-finned heat sink from the sole assessment of surface temperature profile using the golden section search technique. All possible heat transfer modes and temperature dependence of all thermal parameters are accounted for in the present nonlinear model. At first, the direct problem is numerically solved using the Runge–Kutta method, whereas for predicting the prevailing heat generation within a given generalized fin domain an inverse method is used with the aid of the golden section search technique. After simplifications, the proposed scheme is credibly verified with other methodologies reported in the existing literature. Numerical predictions are performed under different levels of Gaussian noise from which accurate reconstructions are observed for measurement error up to 20%. The sensitivity study deciphers that the surface temperature field in itself is a strong function of the surface porosity, and the same is controlled through a joint trade-off among heat generation and other thermo-geometrical parameters. The present results acquired from the golden section search technique-assisted inverse method are proposed to be suitable for designing effective and robust porous fin heat sinks in order to deliver safe and enhanced heat transfer along with significant weight reduction with respect to the conventionally used systems. The present inverse estimation technique is proposed to be robust as it can be easily tailored to analyse all possible geometries manufactured from any material in a more accurate manner by taking into account all feasible heat transfer modes.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 573
Author(s):  
Alexey V. Melkikh

Quantum entanglement can cause the efficiency of a heat engine to be greater than the efficiency of the Carnot cycle. However, this does not mean a violation of the second law of thermodynamics, since there is no local equilibrium for pure quantum states, and, in the absence of local equilibrium, thermodynamics cannot be formulated correctly. Von Neumann entropy is not a thermodynamic quantity, although it can characterize the ordering of a system. In the case of the entanglement of the particles of the system with the environment, the concept of an isolated system should be refined. In any case, quantum correlations cannot lead to a violation of the second law of thermodynamics in any of its formulations. This article is devoted to a technical discussion of the expected results on the role of quantum entanglement in thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document