scholarly journals Can Quantum Correlations Lead to Violation of the Second Law of Thermodynamics?

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 573
Author(s):  
Alexey V. Melkikh

Quantum entanglement can cause the efficiency of a heat engine to be greater than the efficiency of the Carnot cycle. However, this does not mean a violation of the second law of thermodynamics, since there is no local equilibrium for pure quantum states, and, in the absence of local equilibrium, thermodynamics cannot be formulated correctly. Von Neumann entropy is not a thermodynamic quantity, although it can characterize the ordering of a system. In the case of the entanglement of the particles of the system with the environment, the concept of an isolated system should be refined. In any case, quantum correlations cannot lead to a violation of the second law of thermodynamics in any of its formulations. This article is devoted to a technical discussion of the expected results on the role of quantum entanglement in thermodynamics.

Author(s):  
Robert H. Swendsen

This chapter begins by defining terms critical to understanding thermodynamics: reversible, irreversible, and quasi-static. Because heat engines are central to thermodynamic principles, they are described in detail, along with their operation as refrigerators and heat pumps. Various expressions of efficiency for such engines lead to alternative expressions of the second law of thermodynamics. A Carnot cycle is discussed in detail as an example of an idealized heat engine with optimum efficiency. A special case, called negative temperatures, where temperatures actually exceed infinity, provides further insights. In this chapter we will discuss thermodynamic processes, which concern the consequences of thermodynamics for things that happen in the real world.


Author(s):  
H Hassanzadeh ◽  
S H Mansouri

In this paper, we accept the fact that fuel cell and heat engine efficiencies are both constrained by the second law of thermodynamics and neither one is able to break this law. However, we have shown that this statement does not mean the two systems should have the same maximum thermal efficiency when being fed by the same amounts of chemical reactants. The intrinsic difference between fuel cells (electrochemical systems) and heat engines (combustion engines) efficiencies is a fundamental one with regard to the conversion of chemical energy of reactions into electrical work. The sole reason has been shown to be due to the combustion irreversibility of the latter. This has led to the statement that fuel cell efficiency is not limited by the Carnot cycle. Clarity is achieved by theoretical derivations and several numerical examples.


2018 ◽  
Vol 32 (26) ◽  
pp. 1850308 ◽  
Author(s):  
Onur Pusuluk ◽  
Gökhan Torun ◽  
Cemsinan Deliduman

Quantum tunneling events occurring through biochemical bonds are capable of generating quantum correlations between bonded systems, which in turn makes the conventional second law of thermodynamics approach insufficient to investigate these systems. This means that the utilization of these correlations in their biological functions could give an evolutionary advantage to biomolecules to an extent beyond the predictions of molecular biology that are generally based on the second law in its standard form. To explore this possibility, we first compare the tunneling assisted quantum entanglement shared in the ground states of covalent and hydrogen bonds. Only the latter appears to be useful from a quantum information point of view. Also, significant amounts of quantum entanglement can be found in the thermal state of hydrogen bond. Then, we focus on an illustrative example of ligand binding in which a receptor protein or an enzyme is restricted to recognize its ligands using the same set of proton-acceptors and donors residing on its binding site. In particular, we show that such a biomolecule can discriminate between [Formula: see text] agonist ligands if it uses the entanglement shared in [Formula: see text] intermolecular hydrogen bonds as a resource in molecular recognition. Finally, we consider the molecular recognition events encountered in both the contemporary genetic machinery and its hypothetical primordial ancestor in pre-DNA world, and discuss whether there may have been a place for the utilization of quantum entanglement in the evolutionary history of this system.


Author(s):  
George J. Mahl

This paper explores and challenges the underlying basis of the Second Law of Thermodynamics. The second law of thermodynamics and its related equations define the relationship between thermal energy and its conversion into mechanical work. The second law of thermodynamics and its equations are based on theory developed by analysis of the Carnot cycle, then with a leap of faith, applies this theory and these equations to the Rankine cycle and to the general conversion of thermal energy into mechanical energy. This paper explores the original analysis, which forms the basis of the second law of thermodynamics, and offers new analysis which may form a new understanding of thermodynamics. If proven correct, this new understanding may unlock tremendous resources for the production of mechanical and electrical energy.


2021 ◽  
Vol 185 (1) ◽  
Author(s):  
Ken Hiura

AbstractWe propose a prequential or sequentially predictive formulation of the work extraction where an external agent repeats the extraction of work from a heat engine by cyclic operations based on his predictive strategy. We show that if we impose the second law of thermodynamics in this situation, the empirical distribution of the initial microscopic states of the engine must converge to the Gibbs distribution of the initial Hamiltonian under some strategy, even though no probability distribution are assumed. We also propose a protocol where the agent can change only a small number of control parameters linearly coupled to the conjugate variables. We find that in the restricted situation the prequential form of the second law of thermodynamics implies the strong law of large numbers of the conjugate variables with respect to the control parameters. Finally, we provide a game-theoretic interpretation of our formulation and find that the prequential work extraction can be interpreted as a testing procedure for random number generator of the Gibbs distribution.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 263 ◽  
Author(s):  
Omar Jiménez ◽  
Miguel Solís-Prosser ◽  
Leonardo Neves ◽  
Aldo Delgado

We study the classical and quantum correlations in the minimum error discrimination (ME) of two non-orthogonal pure quantum states. In particular, we consider quantum discord, thermal discord and entropy generation. We show that ME allows one to reach the accessible information between the two involved parties, Alice and Bob, in the discrimination process. We determine the amount of quantum discord that is consumed in the ME and show that the entropy generation is, in general, higher than the thermal discord. However, in certain cases the entropy generation is very close to thermal discord, which indicates that, in these cases, the process generates the least possible entropy. Moreover, we also study the ME process as a thermodynamic cycle and we show that it is in agreement with the second law of thermodynamics. Finally, we study the relation between the accessible information and the optimum success probability in ME.


2021 ◽  
Vol 5 (1) ◽  
pp. 6-9
Author(s):  
Soika Alexander Kuzmich

This work is a continuation of the author's studies,1,2,3 related to the elucidation of the physical nature of dark sunspots. They showed that the appearance of cold sunspots, the temperature of which is below the temperature of the photosphere, is incompatible with the second law of thermodynamics. Sunspots in the Sun's photosphere can only be hot. This article provides a thermodynamic analysis of the work of the Sun as a heat engine. It is shown that sunspots are dissipative structures that spontaneously appear in the photosphere of the Sun and ensure its viability as a source of optical radiation. Sunspots play the role of a cooler for the sun's global heat engine, and without them its radiant glow would be impossible, just like the operation of any heat engine without a cold heat sink. In addition, it is shown that all the phenomena of solar activity are caused by the operation of the photospheric heat engine of the Sun, in which sunspots are the source of heat.


2006 ◽  
Vol 45 (3) ◽  
pp. 417-420 ◽  
Author(s):  
Zhang Ting ◽  
Cai Li-Feng ◽  
Chen Ping-Xing ◽  
Li Cheng-Zu

Sign in / Sign up

Export Citation Format

Share Document