Limits of Eliashberg theory and bounds for superconducting transition temperatur

Author(s):  
Mikhail V. Sadovskii
1975 ◽  
Vol 30 (2) ◽  
pp. 250-255
Author(s):  
W. Kessel

Abstract Isotope Effect and Pressure Coefficient of the Superconducting Transition Temperature within the Eliashberg-Theory Starting from the observation that both the mass of the ions and their volume control the phonon frequencies by stretching the phonon spectrum, the change of the Eliashberg-equations of the theory of superconductivity regarding these stretchings is considered. General expressions for the isotopic exponent and the pressure coefficient of the transition temperature are derived in which only derivatives of the transition temperature with respect to the fundamental parameters of the theory are involved. A comparison with experimental values shows that lead is not the metal with the highest transition temperature possible under the simple metals.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
M. A. Kirk ◽  
M. C. Baker ◽  
B. J. Kestel ◽  
H. W. Weber

It is well known that a number of compound superconductors with the A15 structure undergo a martensite transformation when cooled to the superconducting state. Nb3Sn is one of those compounds that transforms, at least partially, from a cubic to tetragonal structure near 43 K. To our knowledge this transformation in Nb3Sn has not been studied by TEM. In fact, the only low temperature TEM study of an A15 material, V3Si, was performed by Goringe and Valdre over 20 years ago. They found the martensite structure in some foil areas at temperatures between 11 and 29 K, accompanied by faults that consisted of coherent twin boundaries on {110} planes. In pursuing our studies of irradiation defects in superconductors, we are the first to observe by TEM a similar martensite structure in Nb3Sn.Samples of Nb3Sn suitable for TEM studies have been produced by both a liquid solute diffusion reaction and by sputter deposition of thin films.


1978 ◽  
Vol 39 (C6) ◽  
pp. C6-448-C6-450 ◽  
Author(s):  
M. W. Young ◽  
J. M.D. Thomas ◽  
C. J. Adkins ◽  
J. W. Tate

1977 ◽  
Vol 38 (C2) ◽  
pp. C2-93-C2-96 ◽  
Author(s):  
C. G. GRANQVIST ◽  
R. A. BUHRMAN ◽  
J. WYNS ◽  
A. J. SIEVERS

2019 ◽  
Vol 7 (9) ◽  
pp. 2589-2595 ◽  
Author(s):  
Luo Yan ◽  
Tao Bo ◽  
Peng-Fei Liu ◽  
Bao-Tian Wang ◽  
Yong-Guang Xiao ◽  
...  

We predict two new molybdenum boride monolayers as phonon-mediated superconductors with superconducting transition temperatures of 3.9 and 0.2 K.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan Pelliciari ◽  
Seher Karakuzu ◽  
Qi Song ◽  
Riccardo Arpaia ◽  
Abhishek Nag ◽  
...  

AbstractIn ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsuyoshi Kawashima ◽  
Shigeki Miyasaka ◽  
Hirokazu Tsuji ◽  
Takahiro Yamamoto ◽  
Masahiro Uekubo ◽  
...  

AbstractThe structural flexibility at three substitution sites in LaFeAsO enabled investigation of the relation between superconductivity and structural parameters over a wide range of crystal compositions. Substitutions of Nd for La, Sb or P for As, and F or H for O were performed. All these substitutions modify the local structural parameters, while the F/H-substitution also changes band filling. It was found that the superconducting transition temperature $$T_{\text{c}}$$ T c is strongly affected by the pnictogen height $$h_{Pn}$$ h Pn from the Fe-plane that controls the electron correlation strength and the size of the $$d_{xy}$$ d xy hole Fermi surface (FS). With increasing $$h_{Pn}$$ h Pn , weak coupling BCS superconductivity switches to the strong coupling non-BCS one where electron correlations and the $$d_{xy}$$ d xy hole FS may be important.


Sign in / Sign up

Export Citation Format

Share Document