Unintentional Selection and Genetic Changes in Native Perennial Grass Populations During Commercial Seed Production

2016 ◽  
Vol 34 (1) ◽  
pp. 39-48 ◽  
Author(s):  
A. R. Dyer ◽  
E. E. Knapp ◽  
K. J. Rice
2001 ◽  
Vol 49 (6) ◽  
pp. 735 ◽  
Author(s):  
Gabriel M. Crowley ◽  
Stephen T. Garnett

Alloteropsis semialata (R.Br.) A.Hitchc. is one of the first perennial grasses in monsoonal Australia to produce seed at the start of the wet season. Patterns of growth and seed production and seed dynamics of Alloteropsis semialata were examined in this study, along with the effects of partial defoliation. Growth of Alloteropsis semialata tussocks started with the first pre-wet-season rains, and was then interrupted during a period with little rain. Growth ceased before the end of the wet season, indicating that factors other than moisture availability were limiting. Seeds of Alloteropsis semialata were germinable on production, but did not remain viable or persist on the soil surface through the dry season. Most seeds and young seedlings were harvested and no seedlings were recruited. Inflorescence production increased with plant size. Moderate defoliation in the early wet season had no impact on plant growth, but reduced inflorescence and seed production for at least 2 years. Absence of a seed bank and early wet-season flowering mean that Alloteropsis semialata is likely to be sensitive to long-term over-grazing.


Oecologia ◽  
2014 ◽  
Vol 174 (4) ◽  
pp. 1401-1413 ◽  
Author(s):  
Susan E. Meyer ◽  
Katherine T. Merrill ◽  
Phil S. Allen ◽  
Julie Beckstead ◽  
Anna S. Norte

2006 ◽  
Vol 54 (7) ◽  
pp. 655 ◽  
Author(s):  
Tanja I. Lenz ◽  
José M. Facelli

The species composition of temperate grasslands in the mid-north of South Australia has been radically altered from a system dominated by native perennial grasses to a system dominated by Mediterranean annual grasses. This study investigated the importance of chemical and physical soil characteristics, topographical features and climatic variables on the abundance of native and exotic grass species in nine ungrazed grasslands. Overall, climatic and other abiotic factors were highly variable. In addition, past management practices and original species composition are generally unknown, leading to further unexplained variation in the data. On a large spatial scale (among sites), the abundance of exotic annual grasses was positively correlated with mean annual rainfall, and on any scale, with finer soil textures and higher soil organic carbon levels. The most abundant annual grass, Avena barbata (Pott ex Link), was generally associated with soil factors denoting higher soil fertility. The abundance of native perennial grass species was not correlated with any environmental variables at any scale. The various native perennial grass species did not show clear associations with soil factors, although they tended to be associated with factors denoting lower soil fertility. However, at small spatial scales (within some sites) and among sites, the abundances of exotic annual and native perennial grasses were strongly negatively correlated. The results suggest that at the present time, rainfall and soil properties are important variables determining the abundance of annual grasses. The driving variables for the abundance of perennial grasses are less clear. They may be controlled by other factors or extreme rainfall events, which were not surveyed. In addition, they are likely to be controlled by competitive interactions with the annual grasses.


2019 ◽  
Vol 41 (5) ◽  
pp. 383 ◽  
Author(s):  
Vinod K. Chejara ◽  
Paul Kristiansen ◽  
R. D. B. (Wal) Whalley ◽  
Brian M. Sindel ◽  
Christopher Nadolny

Hyparrhenia hirta (L.) Stapf (also known as Coolatai grass, South African bluestem or thatching grass) has become a serious invasive weed in Australia. Within its native range, it is generally regarded as a useful grass particularly for thatching, and seed production is low with a low soil seed bank of from 2 to 200seedsm–2. Several hundred accessions of H. hirta were deliberately introduced into Australia up until the 1980s and nearly all were discarded because of poor seed production. However, at least one introduction in the 1890s in northern New South Wales (NSW), Australia, has possibly contributed to the present serious weed problem. Annual seed production from roadside stands in northern NSW ranged from 7000 to 92000seedsm–2 in 2015. The soil seed bank under dense H. hirta infestations in the same region in 2006 and 2007, was found to be ~30000seedsm–2 mostly confined to the top 2cm, with few dormant seeds and a large reduction of these numbers over the next 12 months when further seed input was prevented. Similar studies of other perennial grass weeds have found seed banks of similar sizes, but dormancy mechanisms ensure that their seed banks last for at least 10 years without further seed input. These results suggest that the present weedy populations of H. hirta have dramatically increased fecundity enabling a large seed bank to develop beneath dense stands. The development of seed dormancy and consequently a long-lived seed bank would make this weed even more difficult to control. Until seed dormancy develops, control of H. hirta in northern NSW can be effective provided further input into the seed bank can be prevented.


2019 ◽  
Vol 33 (6) ◽  
pp. 840-846
Author(s):  
Scott N. White

AbstractHair fescue is a widespread, seed-limited perennial grass in lowbush blueberry fields. Growers rely on pronamide, an expensive and difficult herbicide to use, for hair fescue management. Recent herbicide registrations provide opportunity to reduce pronamide use, though effects of these herbicides on hair fescue suppression and seedbank reduction are not well understood. The objectives of this research were to determine (1) the effects of herbicides currently registered in lowbush blueberry on suppression of hair fescue tufts and (2) whether suppression of hair fescue with these herbicides reduces hair fescue seedbanks. Pronamide gave the most consistent reductions in flowering tuft density, though applications after both autumn pruning and autumn of the nonbearing year were required to reduce the hair fescue seedbank by >60% across sites. Nonbearing-year hexazinone applications did not control hair fescue or reduce the seedbank. Nonbearing-year terbacil applications reduced flowering tuft density, but hair fescue recovered in the bearing year, and the seedbank was not reduced. Glufosinate applications following autumn pruning or in the spring of the nonbearing year did not suppress hair fescue or reduce the seedbank. Spring nonbearing-year foramsulfuron applications, alone or after autumn or spring glufosinate applications, reduced hair fescue flowering tuft density, but hair fescue recovered in the bearing year, and the seedbank was not reduced. In contrast, autumn and spring glufosinate applications followed by spring nonbearing-year foramsulfuron applications, when combined with autumn nonbearing-year pronamide applications, reduced flowering tuft density in both the nonbearing and bearing years and reduced the hair fescue seedbank by 58% to 83% across sites. Results indicate that hair fescue seedbanks can be reduced in lowbush blueberry fields and that a reduction in pronamide use will require alternative bearing-year treatments to prevent tuft recovery and seed production.


2008 ◽  
Vol 1 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Rob G. Wilson ◽  
Debra Boelk ◽  
Guy B. Kyser ◽  
Joseph M. DiTomaso

AbstractPerennial pepperweed is invasive throughout California. It thrives in a wide range of environments and is a common weed in floodplains, pastures, wetlands, and roadsides. In disturbed areas, perennial pepperweed rapidly forms monotypic stands with a thick litter layer. These infestations not only out-compete other vegetation, but prevent re-establishment of desirable species even after perennial pepperweed control. This experiment examined integrated management strategies with the goal of maximizing perennial pepperweed control and establishment of desirable native vegetation. The experiment was conducted at two sites in Lassen County, CA. Both sites were heavily infested with perennial pepperweed and lacked competing vegetation. The experimental design was a split-split-randomized block with four replications. Site preparation treatments included winter burning, summer and fall mowing, winter grazing, and fall disking. These treatments were designed to remove thatch to facilitate herbicide application and reseeding of desirable perennial grasses. Herbicide treatments included chlorsulfuron, 2,4-D, or glyphosate applied at the flower bud stage. Revegetation treatments included no seeding and no-till seeding of native perennial grasses. Most site preparation plus herbicide combinations reduced perennial pepperweed cover > 85% compared to the untreated control, although treatment efficacy was variable between sites and years. Burning, grazing, mowing, or disking in combination with herbicide treatment and no-till seeding was necessary for successful native perennial grass establishment. Burning or mowing with yearly 2,4-D applications for 3 yr gave the best combination of perennial pepperweed control and native grass establishment. Chlorsulfuron caused chlorosis and stunting to western wheatgrass, basin wildrye, and beardless wildrye at both sites when applied the spring before seeding. No treatment offered complete weed control, suggesting follow-up spot herbicide applications are needed for long-term perennial pepperweed suppression. These results provide several successful integrated strategies for control of perennial pepperweed and revegetation to a desired native perennial grass community.


2004 ◽  
Vol 12 (2) ◽  
pp. 279-289 ◽  
Author(s):  
James W. Bartolome ◽  
Jeffrey S. Fehmi ◽  
Randall D. Jackson ◽  
Barbara Allen-Diaz

2012 ◽  
Vol 5 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Bryan A. Endress ◽  
Catherine G. Parks ◽  
Bridgett J. Naylor ◽  
Steven R. Radosevich ◽  
Mark Porter

AbstractHerbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram applications to be important to the native forb community. Plots with picloram applied in the fall had greater native forb cover. However, without the addition of native perennial grass seeds, the sites became dominated by exotic grasses. Seeding resulted in a 20% decrease in exotic grass cover. Successful establishment of native perennial grasses was not apparent until 6 yr after seeding. Our study found integrating herbicide application and the addition of native grass seed to be an effective grassland restoration strategy, at least in the case where livestock are excluded.


Sign in / Sign up

Export Citation Format

Share Document