scholarly journals An Unbiased Mineral Compositional Analysis Technique for Circumstellar Disks

2021 ◽  
Vol 18 (2) ◽  
pp. 13-27
Author(s):  
Yung Kipreos ◽  
Inseok Song

A circumstellar disk that surrounds a star is composed of gas, dust, and rocky objects that are in orbit around it. Around infant stars, this disk can act as a source of material that can be used to form planetesimals, which can then accrete more material and form into planets. Studying the mineral composition of these disks can provide insight into the processes that created our solar system. The purpose of this paper is to analyze the mineral composition of these disks by using a newly created python package, Min-CaLM. This package determines the relative mineral abundance within a disk by using a linear regression technique called non-negative least square minimization. The circumstellar disks that are capable of undergoing compositional analysis must have a spectrum with both a detectable mid-infrared excess and prominent silicate features. From our sample, there are only eight debris disks that qualify to be candidates for the Min-CaLM program. The mineral compositions calculated by Min-CaLM are then compared to the Tholen asteroid classification scheme. HD 23514, HD 105234, HD 15407A, BD+20 307, HD 69830, and HD 172555 are found to have a compositions similar to that expected for C-type asteroids, TYC 9410-532-1 resembles the composition of S-type asteroids, and HD 100546 resembles D-type asteroids. Min-CaLM also calculates the mineral compositions of the comets Tempel 1 and Hale-Bopp, and they are used as a comparison between the material in our early solar system and the debris disk compositions. KEYWORDS: Debris disk; Mineral; Composition; Analysis; Asteroid; Circumstellar; Spectroscopy; Python

2010 ◽  
Vol 158 ◽  
pp. 197-203 ◽  
Author(s):  
Jie Liu ◽  
Yue Xin Han ◽  
Wan Zhong Yin

The process mineralogy of potassium-rich shale from Chaoyang of Liaoning, China, was studied. Research results showed there are much less variety and smaller quantities in mineral compositions. Calculated mineral composition by means of chemical composition analysis combined with XRD, MLA, IR and TG-DSC analyses showed that main minerals with were Potassium-feldspar, muscovite, biotite and illite, and gangue minerals were quartz and small amounts of hematite. Potassium-rich minerals such as potassium-feldspar and muscovite contact smoothly with quartz respectively, and there was the direction arrangement among potassium-feldspar, quartz and muscovite in the shale. And quartz and hematite were main cement in the shale. The influences of the research results on the potassium extraction from potassium-rich shale were distinct.


2009 ◽  
Vol 5 (H15) ◽  
pp. 746-747
Author(s):  
Thierry Montmerle ◽  
Matthieu Gounelle ◽  
Georges Meynet

AbstractThe early solar system represents the only case we have of a circumstellar disk that can be investigated “in situ” -albeit 4.6 Gyr after its formation. Meteorites studies give mounting evidence for an intense irradiation phase of the young circumsolar disk by energetic particles, and also for contamination by products of high-mass stellar and/or explosive nucleosynthesis. We thus discuss the conditions of the birth of the solar system in a high-mass star environment.


2013 ◽  
Vol 50 (1) ◽  
pp. 14-25 ◽  
Author(s):  
Christopher D.K. Herd ◽  
Jon M. Friedrich ◽  
Richard C. Greenwood ◽  
Ian A. Franchi

The mineralogy, petrology, and geochemistry of an igneous-textured clast in the Peace River L6 chondrite meteorite was examined to determine the roles of nebular processes, accretion, and parent-body metamorphism in its origin. The centimetre-scale clast is grey and fine grained and is in sharp contact with the host chondrite. Two sub-millimetre veins cut across both the clast and host, indicating that the clast formed prior to the impact (shock) event(s) that produced the numerous veins present in the Peace River meteorite. The clast and host are indistinguishable in terms of mineral compositions. In contrast, there are differences in modal mineralogy, texture, as well as trace element and oxygen isotope composition between the clast and host. These differences strongly suggest that the clast was formed by impact melting of LL-group chondritic material involving loss of Fe–FeS and phosphate components, followed by relatively rapid cooling and incorporation into the Peace River host meteorite. Subsequent metamorphism on the Peace River parent body caused recrystallization of the clast and homogenization of mineral compositions and thermally labile element abundances between the clast and host. Shock metamorphism, including formation of shock melt veins, occurred post-metamorphism, during fragmentation of the L chondrite parent body. The results suggest that the formation of the Peace River parent asteroid included the incorporation of material from other asteroids and that the pre-metamorphic protolith was a breccia. Accordingly, we propose that the Peace River meteorite be reclassified as a polymict breccia.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


The article presents the study of processes of structure formation of cement stone and products of hardening of organic-mineral compositions with fibrous filler (shavings) by the electronic scanning microscopy method. It is established that the additive-free cement stone at the age of 28 days has a dense and homogeneous structure, consists of calcium hydro-silicates, Portlandite and calcite - newgrowths characteristic for cement systems. Cellulose fibers, which make up the bulk of the substance of shavings, are sufficiently active, which determines the high adhesion of the hydration products of the cement binder to their surface. It is shown that the introduction of shavings into the organo-mineral composition leads to inhibition of cement hydration processes. Organo-mineral compositions with different shavings content (two compositions) were analyzed. The first composition is characterized by a fairly dense structure, the cement stone consists of globular nanoscale nuclei of hydrosilicates, Portlandite and calcite. The second composition has a loose porous structure, cement stone consists of non-hydrated cement grains, newgrowths are represented by calcite and vaterite. The structure of the contact zone "osprey fiber-cement stone" in the organo-mineral composition of the first composition indicates a good adhesion of the filler surface with the phases of hydrated cement. The use of shavings as a fibrous filler (the first composition) increases the tensile and bending strength, as well as the wear resistance of organo-mineral compositions. The data obtained by scanning electron microscopy are confirmed by the results of studying the processes of structure formation of cement stone by quantitative x-ray phase analysis.


2016 ◽  
Vol 50 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Tomohiro Usui ◽  
Audrey Bouvier ◽  
Justin I. Simon ◽  
Noriko Kita

Nature ◽  
2019 ◽  
Vol 569 (7754) ◽  
pp. 85-88 ◽  
Author(s):  
Imre Bartos ◽  
Szabolcs Marka

2021 ◽  
pp. 163-194
Author(s):  
Dante S. Lauretta ◽  
Heather L. Enos ◽  
Anjani T. Polit ◽  
Heather L. Roper ◽  
Catherine W.V. Wolner

2008 ◽  
Author(s):  
S. Itoh ◽  
H. Yurimoto ◽  
Takuma Suda ◽  
Takaya Nozawa ◽  
Akira Ohnishi ◽  
...  

2014 ◽  
Vol 127 ◽  
pp. 57-66 ◽  
Author(s):  
Thomas Mueller ◽  
E. Bruce Watson ◽  
Dustin Trail ◽  
Michael Wiedenbeck ◽  
James Van Orman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document