scholarly journals Isotopic effect of macro- and microelements in ecosystems

2020 ◽  
pp. 132-138
Author(s):  
О. Musich ◽  
A. Zubko ◽  
О. Demyanуuk

Isotopic effects occurring in living organisms due to metabolism are analyzed. The phenomenon of metabolism is considered in the classical sense as a combination of biochemical reactions (mainly enzyma­tic) that take place in the cells of living beings and provide the cleavage, synthesis and interconversion of complex compounds. The scope of use of natural isotopes is wide and diverse. Isotopes are carriers of information about the birth and transformation of molecules, and isotope fractionation is a chemical characteristic of a substance. Isotope metabolism consists in the intermolecular fractionation of isotopes at separate stages of biochemical reactions, namely the cleavage, synthesis and interconversion of complex compounds caused by differences in the structure and fundamental properties of isotope nuclei. It is proved that the fractionation of isotopes in chemical and biochemical reactions due to isotopic effects is based on two fundamental properties of atomic nuclei — mass and magnetic moment. The kinetic (mass-depen­ dent) isotopic effect distributes the isotopic nuclei by their masses, and the magnetic one fractionates the nuclei by their magnetic moments. The kinetic isotopic effect depends on the magnitude of the difference in the masses of isotopic molecules, temperature and the difference in the activation energies of isotopic forms. The magnetic isotope effect depends on the reaction rate in a single cell, its projection, magnetic moment and energy of electron-nuclear interaction. It is determined that the fractionation of isotopes in living organisms is that the relative content of one of the isotopes in this compound increases by reducing its content in the other. As a result, there is a fractionation of isotopes within one biological object.

1993 ◽  
Vol 313 ◽  
Author(s):  
Akimasa Sakuma ◽  
Yutaka Sugita

ABSTRACTThe spin-polarized band calculations for the iron nitrides, Fe3N, Fe4N and Fe16N2, have been performed with use of LMTO-ASA Method in the frame of local spin density functional formalism. The results show that the most distant Fe atoms from N have the largest magnetic moment. The central role of the N atom is to bring about the large magnetic moments through the lattice expansion. Concurrently, the N atoms promote an itinerancy of electrons and then in turn prevent the exchange-splitting. This results in an Fe16N2 with the lowest N concentration having the largest magnetic moments. Quantitatively, the obtained magnetic moments are in fair agreements with the experimental results except for Fe16Nr The calculated magnetic moment of Fe6N2 is about 2.4 ΜB/Pε, while the measured value is reported as 3.5 ΜB/FB. The orbital magnetic moment of Fe16N2 is about 0.07 ΜB, which is too small to make up for the difference from the experimental value.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
K. S. Babu ◽  
Sudip Jana ◽  
Manfred Lindner

Abstract The excess in electron recoil events reported recently by the XENON1T experiment may be interpreted as evidence for a sizable transition magnetic moment $$ {\mu}_{v_e{v}_{\mu }} $$ μ v e v μ of Majorana neutrinos. We show the consistency of this scenario when a single component transition magnetic moment takes values $$ {\mu}_{v_e{v}_{\mu }}\in \left(1.65-3.42\right)\times {10}^{-11}{\mu}_B $$ μ v e v μ ∈ 1.65 − 3.42 × 10 − 11 μ B . Such a large value typically leads to unacceptably large neutrino masses. In this paper we show that new leptonic symmetries can solve this problem and demonstrate this with several examples. We first revive and then propose a simplified model based on SU(2)H horizontal symmetry. Owing to the difference in their Lorentz structures, in the SU(2)H symmetric limit, mν vanishes while $$ {\mu}_{v_e{v}_{\mu }} $$ μ v e v μ is nonzero. Our simplified model is based on an approximate SU(2)H, which we also generalize to a three family SU(3)H-symmetry. Collider and low energy tests of these models are analyzed. We have also analyzed implications of the XENON1T data for the Zee model and its extensions which naturally generate a large $$ {\mu}_{v_e{v}_{\mu }} $$ μ v e v μ with suppressed mν via a spin symmetry mechanism, but found that the induced $$ {\mu}_{v_e{v}_{\mu }} $$ μ v e v μ is not large enough to explain recent data. Finally, we suggest a mechanism to evade stringent astrophysical limits on neutrino magnetic moments arising from stellar evolution by inducing a medium-dependent mass for the neutrino.


1999 ◽  
Vol 14 (36) ◽  
pp. 2525-2529
Author(s):  
ELENA N. BUKINA

It is shown that the difference between the magnetic moment results in the quark model with null instantons and semibosonized Nambu–Jona-Lasinio model lies in the symmetry properties of the meson cloud contributions.


1973 ◽  
Vol 28 (11) ◽  
pp. 1753-1758 ◽  
Author(s):  
C.-W. Burges ◽  
R. Koschmieder ◽  
W. Sahm ◽  
A. Schwenk

The NMR lines of 107Ag and 109Ag have been investigated in aqueous solutions of AgF, AgNO3, and AgClO4. The ratio of the Larmor frequencies of 109Ag and 107Ag has been measured in various samples: ν(109Ag)/ν(107Ag) = 1.149 639 7 (8). No primary isotopic effect was to be detected within these limits of error (0.7 ppm). This ratio yields the hyperfine structure anomaly 107⊿109 = − 0.004127 7(7). The concentration dependence of the chemical shift of the 107Ag and 109Ag resonance frequencies was determined. Using this dependence, the ratios of the Larmor frequencies of the 107Ag and 109Ag nuclei for infinite dilution relative to the resonance frequency of 73Ge in GeCl4 are given. The magnetic moments of the 107Ag+ and 109Ag+ ions merely surrounded by water molecules are μ(107Ag+) = − 0.113 045 3(9) μN and μ(109Ag+) = − 0.129 961 5(10) μN without diamagnetic corrections. These values are compared with the result of an atomic beam experiment, the difference of the moments is due to the shielding of the silver nuclei by water molecules around the ions. The shielding constant is σ* (Ag+ in H2O vs. Ag atom) = − 0.000 94(17). Preliminary values of the relaxation times are given.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 265-272 ◽  
Author(s):  
T. Inoue ◽  
Y. Nakamura ◽  
Y. Adachi

A dynamic model, which predicts non-steady variations in the sediment oxygen demand (SOD) and phosphate release rate, has been designed. This theoretical model consists of three diffusion equations with biochemical reactions for dissolved oxygen (DO), phosphate and ferrous iron. According to this model, step changes in the DO concentration and flow velocity produce drastic changes in the SOD and phosphate release rate within 10 minutes. The vigorous response of the SOD and phosphate release rate is caused by the difference in the time scale of diffusion in the water boundary layer and that of the biochemical reactions in the sediment. Secondly, a negative phosphate transfer from water to sediment can even occur under aerobic conditions. This is caused by the decrease in phosphate concentration in the aerobic layer due to adsorption.


2011 ◽  
Vol 286 (27) ◽  
pp. 23623-23629 ◽  
Author(s):  
Yan Zhang ◽  
Vadim N. Gladyshev

Biological trace elements are needed in small quantities but are used by all living organisms. A growing list of trace element-dependent proteins and trace element utilization pathways highlights the importance of these elements for life. In this minireview, we focus on recent advances in comparative genomics of trace elements and explore the evolutionary dynamics of the dependence of user proteins on these elements. Many zinc protein families evolved representatives that lack this metal, whereas selenocysteine in proteins is dynamically exchanged with cysteine. Several other elements, such as molybdenum and nickel, have a limited number of user protein families, but they are strictly dependent on these metals. Comparative genomics of trace elements provides a foundation for investigating the fundamental properties, functions, and evolutionary dynamics of trace element dependence in biology.


1972 ◽  
Vol 27 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Klaus Gustav Heumann ◽  
Karl Heinrich Lieser

The following heterogeneous exchange equilibria have been examined for isotopic effects: CaCO3/Ca(aq.)2⊕. Ca-GBHA/Ca(aq.)2⊕ and Ca(Dowex 50)2⊕/Ca(aq.)2⊕ (GBHA = glyoxal-bis (2-hydroxyanil)). The isotopic ratios 44Ca/40Ca and 48Ca/40Ca were determined by means of a mass spectrometer with a thermal ion source. In the system CaCO3/Ca(aq.)2⊕, the elementary separation factor was found to be less than 1‰ or 0,5‰ per mass unit, respectively.For the exchange in the system Ca-GBHA/Ca(aq.)2⊕ in the concentration range from 0.011 to 0.84 M an elementary separation factor less than 1‰ per mass unit was found; from a three-stage experiment at a calcium concentration of 1.23 M it was concluded that the elementary isotopic effect is less than 0.4‰ per mass unit. Therefore no isotopic fractionation is to be expected for precipitation of inorganic or organic calcium salts.An enrichment of the heavier calcium isotopes in the solution was found in the case of the exchange in a Dowex 50-X12 loaded column. The isotopic effect depends on the concentration of the hydrochloric acid used as the eluent.


2018 ◽  
Vol 8 (11) ◽  
pp. 2200 ◽  
Author(s):  
Yu Feng ◽  
Zhou Cui ◽  
Ming-sheng Wei ◽  
Bo Wu ◽  
Sikander Azam

Employing first-principle calculations, we investigated the influence of the impurity, Fe atom, on magnetism and electronic structures of Heusler compound Ti2CoSi, which is a spin gapless semiconductor (SGS). When the impurity, Fe atom, intervened, Ti2CoSi lost its SGS property. As TiA atoms (which locate at (0, 0, 0) site) are completely occupied by Fe, the compound converts to half-metallic ferromagnet (HMF) TiFeCoSi. During this SGS→HMF transition, the total magnetic moment linearly decreases as Fe concentration increases, following the Slate–Pauling rule well. When all Co atoms are substituted by Fe, the compound converts to nonmagnetic semiconductor Fe2TiSi. During this HMF→nonmagnetic semiconductor transition, when Fe concentration y ranges from y = 0.125 to y = 0.625, the magnetic moment of Fe atom is positive and linearly decreases, while those of impurity Fe and TiB (which locate at (0.25, 0.25, 0.25) site) are negative and linearly increase. When the impurity Fe concentration reaches up to y = 1, the magnetic moments of Ti, Fe, and Si return to zero, and the compound is a nonmagnetic semiconductor.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1732 ◽  
Author(s):  
Martin Friák ◽  
Anton Slávik ◽  
Ivana Miháliková ◽  
David Holec ◽  
Monika Všianská ◽  
...  

The intermetallic compound Fe 2 AlTi (alternatively Fe 2 TiAl) is an important phase in the ternary Fe-Al-Ti phase diagram. Previous theoretical studies showed a large discrepancy of approximately an order of magnitude between the ab initio computed magnetic moments and the experimentally measured ones. To unravel the source of this discrepancy, we analyze how various mechanisms present in realistic materials such as residual strain effects or deviations from stoichiometry affect magnetism. Since in spin-unconstrained calculations the system always evolves to the spin configuration which represents a local or global minimum in the total energy surface, finite temperature spin effects are not well described. We therefore turn the investigation around and use constrained spin calculations, fixing the global magnetic moment. This approach provides direct insight into local and global energy minima (reflecting metastable and stable spin phases) as well as the curvature of the energy surface, which correlates with the magnetic entropy and thus the magnetic configuration space accessible at finite temperatures. Based on this approach, we show that deviations from stoichiometry have a huge impact on the local magnetic moment and can explain the experimentally observed low magnetic moments.


Author(s):  
S. Ulmer ◽  
A. Mooser ◽  
H. Nagahama ◽  
S. Sellner ◽  
C. Smorra

The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge–parity–time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’.


Sign in / Sign up

Export Citation Format

Share Document