scholarly journals IMPROVEMENT OF HIGH-PRECISION LEVELLING METHOD BY DIGITAL LEVELS IN THE CONDITION OF NON-SUFFICIENT LIGHT INTENSITY OF LINED ROD

Author(s):  
Valerij G. Salnikov ◽  

The performing of high-precision geometric leveling by short beams with the purpose of control for the process of building and exploitation of engineering structures and industrial equipment is carried out with visual reading levels or digital levels in case there are a lot of disturbance effects, the basic of which are the vibrations of some equipment in operation, rapid temperature changes, and also non-sufficient and irregular light intensity of bar-code or lined rods. The purpose of the article is the improvement of high-precision leveling method performance by digital levels in the condition of insufficient light intensity of bar-code rods. The article considers the influence of insufficient light intensity of bar-code rods on the leveling station work by digital levels. Due to irregular and insufficient light intensity of the rod the receiver of the digital level does not allow to read distinctly the bar-code and to perform its processing and output to the indication unit in metric system. That’s why for accurate measurement on the station the light intensity of the rods should be sufficient, nearly similar and regular. The article gives the results of using the rod, equipped with light-emitting diodes to provide its sufficient and regular lighting.

Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 335 ◽  
Author(s):  
Wei-Hsiung Tseng ◽  
Diana Juan ◽  
Wei-Cheng Hsiao ◽  
Cheng-Han Chan ◽  
Hsin-Yi Ma ◽  
...  

In this study, our proposed ultraviolet light-emitting diode (UV LED) mosquito-trapping lamp is designed to control diseases brought by insects such as mosquitoes. In order to enable the device to efficiently catch mosquitoes in a wider area, a secondary freeform lens (SFL) is designed for UV LED. The lens is mounted on a 3 W UV LED light bar as a mosquito-trapping lamp of the new UV LED light bar module to achieve axially symmetric light intensity distribution. The special SFL is used to enhance the trapping capabilities of the mosquito-trapping lamp. The results show that when the secondary freeform surface lens is applied to the experimental outdoor UV LED mosquito-trapping lamp, the trapping range can be expanded to 100π·m2 and the captured mosquitoes increased by about 300%.


2018 ◽  
Vol 5 (6) ◽  
pp. 180205 ◽  
Author(s):  
Elizabeth G. Rowse ◽  
Stephen Harris ◽  
Gareth Jones

Emerging lighting technologies provide opportunities for reducing carbon footprints, and for biodiversity conservation. In addition to installing light-emitting diode street lights, many local authorities are also dimming street lights. This might benefit light-averse bat species by creating dark refuges for these bats to forage and commute in human-dominated habitats. We conducted a field experiment to determine how light intensity affects the activity of the light-opportunistic Pipistrellus pipistrellus and light-averse bats in the genus Myotis. We used four lighting levels controlled under a central management system at existing street lights in a suburban environment (0, 25, 50 and 100% of the original output). Higher light intensities (50 and 100% of original output) increased the activity of light-opportunistic species but reduced the activity of light-averse bats. Compared to the unlit treatment, the 25% lighting level did not significantly affect either P. pipistrellus or Myotis spp. Our results suggest that it is possible to achieve a light intensity that provides both economic and ecological benefits by providing sufficient light for human requirements while not deterring light-averse bats.


2013 ◽  
Vol 706-708 ◽  
pp. 1124-1127
Author(s):  
Hai Xia Li

Because the car headlamp light intensity is too large and it leads to accidents, This paper is based on the initiative to reduce the light intensity of their vehicles according headlights glare or close the high beam and open the lamp method, to achieve the purpose of the glare. The system is AT89C51 microcontroller as the core control, use of photodiode sensor to induction opposite the car headlights light intensity , when opposite car headlights light intensity up to a certain value, photodiode get a signal to the microcontroller ,and then microcontroller sends a signal, to control buzzer sound or not. When the buzzer sounded, using DAC0832 chip to control the brightness of the light emitting diode or control the light on and off and low beam enabled. When enabled for dipped beam, has been more than the antiglare range; after the scope enabled high beam, in order to achieve the anti-dazzle cycle. Through practice, the system has reached the anti-dazzle purpose and has practical value .


2011 ◽  
Vol 130-134 ◽  
pp. 4084-4087
Author(s):  
Hsing Cheng Chang ◽  
Ya Hui Chen ◽  
San Shan Hung ◽  
Chi Chih Lai ◽  
Chein Chuan Hung ◽  
...  

Light intensity enhancement of GaN-based blue light-emitting diodes (LEDs) is performed using different surface roughening technologies. Three roughening technologies are applied that contain surface roughening of p-GaN, textured indium tin oxide (ITO) on roughened p-GaN, and growing ZnO nanorods on textured ITO/p-GaN. A roughened p-GaN surface was grown on the c-plane sapphire substrate at temperature 800 °C. The morphologies of the textured LEDs with roughness in the range from 9.67 nm to 51.13 nm were observed. The light output efficiency of LED with roughened ITO layer is increased up to 73.8 %. Different dimensions of LEDs can be driven by constant injection current 20 mA without increasing threshold voltage, and larger size of ZnO/ITO/p-GaN LED shows higher luminance intensity. The LEDs with ZnO nanorods on roughened ITO/GaN have shown great performance to enhance the power conversion efficiency.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 361
Author(s):  
Zhengnan Yan ◽  
Long Wang ◽  
Yifei Wang ◽  
Yangyang Chu ◽  
Duo Lin ◽  
...  

Insufficient light in autumn–winter may prolong the production periods and reduce the quality of plug seedlings grown in greenhouses. Additionally, there is no optimal protocol for supplementary light strategies when providing the same amount of light for plug seedling production. This study was conducted to determine the influences of combinations of supplementary light intensity and light duration with the same daily light integral (DLI) on the morphological and physiological properties of cucumber seedlings (Cucumis sativus L. cv. Tianjiao No. 5) grown in a greenhouse. A supplementary light with the same DLI of 6.0 mol m−2 d−1 was applied with the light duration set to 6, 8, 10, or 12 h d−1 provided by light-emitting diodes (LEDs), and cucumber seedlings grown with sunlight only were set as the control. The results indicated that increasing DLI using supplementary light promoted the growth and development of cucumber seedlings over those grown without supplementary light; however, opposite trends were observed in the superoxide dismutase (SOD) and catalase (CAT) activities. Under equal DLI, increasing the supplementary light duration from 6 to 10 h d−1 increased the root surface area (66.8%), shoot dry weight (24.0%), seedling quality index (237.0%), root activity (60.0%), and stem firmness (27.2%) of the cucumber seedlings. The specific leaf area of the cucumber seedlings decreased quadratically with an increase in supplementary light duration, and an opposite trend was exhibited for the stem diameter of the cucumber seedlings. In summary, increased DLI or longer light duration combined with lower light intensity with equal DLI provided by supplementary light in insufficient sunlight seasons improved the quality of the cucumber seedlings through the modification of the root architecture and stem firmness, increasing the mechanical strength of the cucumber seedlings for transplanting.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2391 ◽  
Author(s):  
Chen ◽  
Wu ◽  
Hsieh ◽  
Chen

In this present study, we investigated the effect of photocatalyzation on the degradation of trichloroethylene (TCE) in the aqueous phase by a photocatalyst-coated plastic optical fiber (POF). Two light-emitting diodes (LEDs) with low light intensity were used as the light source and TiO2 and ZnO were used as photocatalysts, which were characterized by scanning electron microscope (SEM) and UV-Vis diffuse reflectance spectroscopy (DRS). The para-chlorobenzoic acid (pCBA) was used as the hydroxyl radical probe for kinetic study and for the calculation of hydroxyl radical conversion rate (ROH,UV ). Experimental results show that POF coated with TiO2 exhibited higher degradation efficiency of TCE in basic solution, but POF coated with ZnO performed better in acidic solution. The increase of coating times resulted in the decrease in degradation efficiency of TCE due to increased thickness of the photocatalyst layer. The enhancement of light intensity contributed to the improvement of photocatalytic treatment efficiency. The ROH,UV for TiO2 and ZnO coated POF increased from 2 × 103 to 8 × 103 M s cm2 mJ−1 and from 8 × 102 to 2 × 103 M s cm2 mJ−1, respectively, as the pH increased from 4 to 10.


2016 ◽  
Vol 49 (1) ◽  
pp. 62-76 ◽  
Author(s):  
Christian Hopmann ◽  
Malte Röbig

In the market of lighting technologies, light-emitting diodes (LEDs) gradually substitute conventional light sources. Because of their high energy efficiency and long lifetime, they are increasingly used in consumer products, interior and exterior lighting applications in the home and mobility sector as well as in industrial applications. The material properties in the surrounding area of the light-emitting semiconductor chip are crucial to the performance of LED. Although the energy efficiency of LED is higher compared to conventional light sources, temperatures exceed about 150°C close to the semiconductor chip. Especially in combination with high amounts of blue ultraviolet (UV) radiation, the materials for encapsulation cannot meet the requirements and reduce the lifetime of an LED significantly. Contrary to conventional materials, high transparent liquid silicone rubber (LSR) can resist high temperatures as well as UV radiation and offer a great freedom in design. This enables the combination of the encapsulation (primary optics) and the secondary optics in one component. The objective of an ongoing joint research project with various partners from the industry is the development of an innovative injection moulding process for high precision optics in LED applications made of LSR, which is analysed at the Institute of Plastics Processing (IKV), Aachen, Germany. Therefore, the LED board is placed in the injection mould and overmoulded with LSR. The goal is a highly integrated process with major emphasis on the reduction of components, mounting steps and costs. Furthermore, the combination of primary and secondary optics promises an improved effectiveness because losses in light power due to the transition of the primary and secondary optics are reduced.


Sign in / Sign up

Export Citation Format

Share Document