scholarly journals Formulation and Pharmacodynamic Evaluation of Fluoxetine HCl Mucoadhesive Microsphere.

2018 ◽  
Vol 8 (3) ◽  
pp. 2458-2471
Author(s):  
Madhuri T. Deshmukh . ◽  
Shrinivas K. Mohite .
2016 ◽  
Vol 6 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Md. Lutful Amin ◽  
Tajnin Ahmed ◽  
Md. Abdul Mannan

CrystEngComm ◽  
2018 ◽  
Vol 20 (20) ◽  
pp. 2780-2792 ◽  
Author(s):  
Austin A. Peach ◽  
David A. Hirsh ◽  
Sean T. Holmes ◽  
Robert W. Schurko

Novel mechanochemical syntheses of cocrystals of fluoxetine HCl are presented, along with characterization of the molecular-level structures by 35Cl solid-state NMR and DFT calculations.


1996 ◽  
Vol 18 (3) ◽  
pp. 338
Author(s):  
G.T. Livezey ◽  
S. Yilk ◽  
K. Olson ◽  
S. Campbell ◽  
C.V. Smith

Author(s):  
Kritika Saikia ◽  
Bhupen Kalita ◽  
Banasmita Kalita

ABSTRACTObjective: The main objective of the present work is to develop and characterize a novel mucoadhesive intranasal microsphere gel formulation ofdrug venlafaxine to control the drug release through nasal mucosa and reach the target site with minimal side effect. The objectives of the studyare (1) formulation of mucoadhesive microspheres, (2) evaluation of mucoadhesive microspheres, (3) formulation of mucoadhesive microsphereloadednasal gel, (4) and evaluation of nasal gel.Methods: Preparation of chitosan microsphere: The chitosan microspheres were prepared by emulsion cross-linking method. Preparation ofmicrosphere-loaded gel: The nasal gels with varying concentrations of Carbopol 934P were prepared by dispersing required quantity of Carbopol inrequired quantity of distilled water with continuous stirring and kept overnight for complete hydration. The gel was then modified by the addition ofvarying proportion of hydroxypropyl methylcellulose (HPMC) K4M.Results: The prepared microspheres were evaluated for size distribution, surface morphology by scanning electron microscopy, entrapment efficiency,compatibility by Fourier transform infrared spectroscopy, and differential scanning calorimetry. Entrapment efficiency of all formulations was foundmore than 70%. Microsphere formulation containing drug and polymer in the ratio of 1:2.5 was found to be optimized. Optimized microsphereformulation was then incorporated in gel prepared using Carbopol 934P and HPMC. Prepared gel formulations were studied for viscosity, spreadability,and in-vitro drug release in simulated nasal conditions. Viscosity of the optimized batch of gel was recorded at 1056 centipoise. Drug release wasprolonged for the microsphere-in-gel formulations compared to the microspheres alone. For the optimized batch of gel, cumulative drug release of85.67% was found after 8 hrs.Conclusion: The results suggest that venlafaxine hydrochloride mucoadhesive microsphere-loaded nasal gel would give sustained drug release andsuperior bioavailability in the brain sites.Keywords: Venlafaxine, Chitosan, Mucoadhesive, Microsphere, Nasal gel.


Author(s):  
Madhuri T Deshmukh ◽  
Shrinivas K Mohite

Objective: The objective of this research was to formulate and evaluate olanzapine (OLE) mucoadhesive microsphere prepared using carbopol and sodium combination. OLE having extensive hepatic first pass metabolism and low bioavailability problem, determined the need for the development of sustained release formulation.Methods: OLE mucoadhesive microspheres were prepared by ionic gelation method. OLE mucoadhesive microspheres were prepared byionic gelation method by using calcium chloride as crosslinking agent. The OLE mucoadhesive microsphere was characterized by particle sizemeasurement, process yield, morphology of microsphere, drug entrapment efficiency, mucoadhesion test, differential scanning calorimetry, powder X-ray diffraction, Fourier transforms infrared (FTIR) study and in-vitro drug release.Results: The OLE mucoadhesive microsphere having mean particle size ranged from 546.0 µm to 554.3 µm, and the entrapment efficiencies ranged from 73% to 96%. All the olanzapine (OLE) microsphere batches showed good in-vitro mucoadhesive property ranging from 75.89% to 96.47% and in the in-vitro wash off test ranging from 68.12% to 81.3%. FTIR studies indicated the no drug-polymer interactions in the ideal formulation F9. Therewere no compatibility issues, and the crystallinity of OLE was found to be reduced shoeing less intense peak in prepared mucoadhesive microspheres, which were confirmed by differential scanning calorimeter and X-ray diffraction studies. Among different formulations, the OLE microspheres of batch F9 had shown the optimum percent drug entrapment of microspheres. Release pattern of OLE from F9 microspheres batch followed Higuchi kinetic model. Stability studies were carried out for F9 formulation at 4°C/ambient, 25±2°C/60±5%, 40±2°C/75±5% relative humidity revealed that the drug entrapment, mucoadhesive behavior, and drug release were within permissible limits.Conclusion: The results obtained in this work demonstrate the use of carbopol and sodium alginate polymer for preparation of mucoadhesive microsphere.Keywords: Ionic gelation method, Gastroretentive delivery, Mucoadhesive microsphere, Carbopol.


2012 ◽  
Vol 9 (11) ◽  
pp. 2986-2994 ◽  
Author(s):  
Mohammad Zaki Ahmad ◽  
Sohail Akhter ◽  
Mohammed Anwar ◽  
Farhan Jalees Ahmad

Sign in / Sign up

Export Citation Format

Share Document