scholarly journals Peningkatan Nilai Impak Baja Hadfield Mn 12 Melalui Proses Perlakuan Panas Homogenisasi Bertahap

2018 ◽  
Vol 1 (02) ◽  
pp. 09-14
Author(s):  
Ery Hidayat ◽  
Beny Bandanadjaja

Hadfield manganese steel is the steel with a composition of 1.0-1.4% C and 10-14% Mn, where the C: Mn ratio is made at 1:10. In as-cast conditions, the steel has a structure of carbide (Fe, Mn) 3C at the grain boundary, formed during slow cooling in the sand mold. The carbide existence can cause brittle properties of the material and needs to be eliminated by a heat treatment process that is homogenization (or solution treatment). In this study, a stepped heat treatment process was carried out by giving preheating at temperatures below the austenitizing temperature of 600 oC and 700 oC. The austenitizing temperature is given lower than the conventional method which usually uses 1050 oC, wherein this study austenitizing heating was given at 980 oC. Rapid quenching is performed using water with agitation or stirring to ensure that the cooling rate is fast enough to generate a 100% austenite structure. The results achieved that the sample with a stepped heat treatment process with a preheating temperature of 600 oC and followed by austenitizing of 980 oC could perform finer austenite grains, with the highest impact value of 255 Joules. A fracture of the impact sample resulting very ductile behavior which can be seen that the impact sample is not completely broken.

2021 ◽  
Vol 1042 ◽  
pp. 111-115
Author(s):  
Dwi Rahmalina ◽  
Hendri Sukma ◽  
Abdul Rokhim ◽  
Amin Suhadi

Metal matrix composite has been developed to improve mechanical properties for the automotive component application. One crucial factor in achieving excellent mechanical properties is improving the properties of the aluminum matrix of composite by the heat treatment process. The mechanical properties of Al-Mg-Si matrix composites alloyed with Zn and reinforced with 5% SiC and 5%Gr particle were examined after the heat treatment process. The aluminum matrix is melted inside the crucible furnace at 850 °C and is added with SiC/Gr particle, followed by stirring at 7500 rpm to optimize the mixing of the composite. Then, the composite is poured into the preheated mold at 300 °C and then squeezed with 30 MPa of pressure. The heat treatment process consists of three steps; solution treatment, quenching, and artificial aging. The aging process is conducted with variation of temperature (140 °C, 180 °C and 200 °C) and holding time (2, 4, and 6 hours). The test results show that the mechanical properties of aluminum matrix composite tend to increase after the heat treatment process. The optimum mechanical properties are achieved at the aging temperature of 200 °C for 6 hours, with the hardness value of 60.3 HRA and the impact value of 0.112 Joule/mm2.


2010 ◽  
Vol 97-101 ◽  
pp. 752-755 ◽  
Author(s):  
Jia Qi Zhang ◽  
Yi Long Liang ◽  
Song Xiang ◽  
Xiao Di Yang ◽  
Ming Yang

The effect of the heat treatment process parameters on the mechanical properties and microstructure of SWRS82B wire rods were investigated. Specimens were austenitized at 850°C~900°C and held at 500°C~600°C. The results show that the interlamellar spacing and the pearlite block size become finer with the decrease of the isothermal temperature. At the same isothermal temperature condition, the interlamellar spacing decreases with the increase of austenitizing temperature. The fine interlamellar spacing increases the yield strength and ultimate tensile strength.


2013 ◽  
Vol 820 ◽  
pp. 15-19
Author(s):  
Xiao Dong Du ◽  
Zi Li Song ◽  
Yi Qing Chen ◽  
Jia Qing Wang ◽  
Guang Fu Liu ◽  
...  

This paper describes the influence of heat treatment process on the microstructure and properties of a new martensitic stainless steel, which contains 0.7% carbon, 17% chromium and 1% molybdenum and can be used as kitchen knives and scissors. The microstructure and properties of the tested alloys after quenching at 980 - 1100 °C and low tempering were investigated by means of optical microscope (OM), scanning electron microscope (SEM), Rockwell hardness tester and impact tester. The results show that the microstructure consists of acicular martensite, carbides and a litter retained austenite after quenching and tempering. The carbides are mainly (Fe,Cr)23C6. The content of retained austenite increases with the increase of the quenching temperature. The solubility of carbon in martensite changes similarly. The martensite gets coarser as the quenching temperature increasing. The maximum value of hardness is 59 HRC, when the quenching temperature is 1060 °C. The impact toughness increases when the quenching temperature increases from 980 °C to 1080 °C and then decreases. The suitable heat treatment process for this alloy is quenching at 1060 °C~1080 °C for 30 min and then tempering at 200°C.


2013 ◽  
Vol 762 ◽  
pp. 418-423
Author(s):  
Feng Zhang Ren ◽  
Feng Jun Li ◽  
Ling Bai ◽  
Yun Fei Wang

The heat treatment process of 31Mn2SiREB cast steel used in crawler shoes is directly lifted from the heat treatment process of Mn13 high-manganese cast steel, i. e., quenching at 1050 oC after casting. The reasonableness of the process needs to be surveyed. In this paper, the effects of quenching temperature and diffusion annealing pre-treatment on mechanical properties, micro-area composition uniformity and micro-hardness uniformity were investigated. For quenching after casting, the tensile strength and impact energy increase observably with the elevation of quenching temperature, but the impact energy at higher quenching temperature is still very small. The fluctuation of micro-hardness and chemical composition at different micro-areas becomes obviously small with the increase of quenching temperature. For quenching after a diffusion annealing pre-treatment, the impact energy is very high and up to 36.3 J.


2013 ◽  
Vol 747-748 ◽  
pp. 307-312
Author(s):  
Da Quan Li ◽  
Yong Liu ◽  
Jun Xu ◽  
Shuang Shao ◽  
Chun Shui Xu ◽  
...  

The effect of heat treatment on vacuum die-casting (VDC) AT72 magnesium alloy was studied. The optimal process of heat treatment was obtained. The result shows that the alloy was composed of α-Mg, Mg17Al12and Mg2Sn. After solution treatment at 686K for 24h, Mg17Al12completely dissolved in α-Mg matrix. With the aging treatment following solution treatment, Mg17Al12kept precipitating in the matrix and along grain boundary. Moreover, Mg2Sn distributed along the grain boundary did not disappear after solution treatment at 686K. This indicates that Mg2Sn phase exhibits very high thermal stability. The heat treatment process was optimized with solution at 686K for 24h plus ageing at 473K for 18h, in the condition of which AT72 magnesium alloy exhibits a maximum hardness with value of 90.8Hv. The successful application of heat treatment for AT72 magnesium alloy could be attributed to the elimination of the air bubble in the casing through VDC. However, the porosity in the cast couldnt be efficiently eliminated by VDC, which result in the growth of shrinkage pore.


2010 ◽  
Vol 654-656 ◽  
pp. 843-846 ◽  
Author(s):  
Huda Al-Salihi ◽  
Colleen J. Bettles ◽  
Barry C. Muddle

A good combination of high strength and hardenability makes the alloy Ti 10V-2Fe-3Al a prime candidate for applications in the aerospace arena. However, these properties are very dependent on a post-forming heat treatment. The overall objective of this work is to determine the effect of prior deformation on the aging behaviour. In this particular study, the influence of the heat treatment, either solution and/or aging, on the microstructures, and consequently on the mechanical properties, without introduced strain is reported. Various solution heat treatments have been conducted, either in the β phase or in the (α+β) phase field, followed by rapid quenching or slow cooling, and aging treatments at different temperatures (250, 350, 400, 500C°) above and below the ω-transus temperature. Vickers hardness indentations were used to follow the precipitation hardening behaviour, and mechanical properties were determined using a shear punch test. The aging response is dependent not only on the presence of the athermal ω phase but also on the proximity of the aging temperature to the ω-transus. Most treatments showed an unusual initial softening behaviour prior to age hardening, however this appears to be related again to the composition and fraction of the β phase retained after solution treatment.


Author(s):  
Pengjun Cao ◽  
Yilong Zhang ◽  
Kejian Li ◽  
Jiling Dong ◽  
Wei Wu

Abstract The 25Cr2MoVA steel was subjected to various heat treatments. We found that the hardness increased when the quenching temperature was in the range of 870 – 910 °C, and then it decreased for the temperature of 910 – 990 °C. The maximum hardness was 553 HV after quenching from 910 °C. Following quenching from 910°C, the 25Cr2Mo-VA steel was tempered in the temperature range of 560 to 750 °C. With an increase in the tempering temperature, the hardness and tensile strength of the material decreased, while the impact toughness increased; the corrosion resistance increased initially and then decreased. The best heat treatment process for the 25Cr2MoVA steel involved quenching form 910 °C and tempering at 650°C for 1 h, the hardness was 362 HV, the tensile strength reached 1 310 MPa, the impact energy reached 149 J, and the material exhibited the best corrosion resistance.


This paper includes the study of heat treatment process that we carried out on En 19 steel in cryogenic atmosphere. Cryogenic treatments of alloy steels have been significantly increase wear resistance and toughness. These investigations of warmth treatment cryogenic medicines of amalgam steels have been asserted to altogether expand wear protection and sturdiness. Cryogenic handling is a supplementary procedure to customary warmth treatment process in steels. The cryogenic treatment on apparatus materials builds the life of instruments, gear, parts and materials by boosting elasticity, sturdiness and strength. This cryogenic hardening process is an onetime treatment influencing the whole part — not only the surface. Cryogenic treatment has been broadly embraced as a cost decrease and execution upgrading innovation. Cryogenic treatment is likewise utilized as an empowering innovation, when its pressure alleviating benefits are used to allow the manufacture (or machining) of basic resistance parts. With regards to great outcomes about the use of profound cryogenic treatment (DCT) on materials, the impact on the microstructure and properties (hardness, strength and the substance of held austenite) are observed to be made strides. Cryogenic treatment has been distinguished to improve the properties of Tools steels. It is discovered that cryogenic treatment confers almost 110% change in apparatus life.


Sign in / Sign up

Export Citation Format

Share Document